BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 11098912)

  • 1. How to apply a discrete vessel model in thermal simulations when only incomplete vessel data are available.
    Raaymakers BW; Kotte AN; Lagendijk JJ
    Phys Med Biol; 2000 Nov; 45(11):3385-401. PubMed ID: 11098912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast thermal simulations and temperature optimization for hyperthermia treatment planning, including realistic 3D vessel networks.
    Kok HP; van den Berg CA; Bel A; Crezee J
    Med Phys; 2013 Oct; 40(10):103303. PubMed ID: 24089933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting effects of blood flow rate and size of vessels in a vasculature on hyperthermia treatments using computer simulation.
    Huang HW; Shih TC; Liauh CT
    Biomed Eng Online; 2010 Mar; 9():18. PubMed ID: 20346157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling individual temperature profiles from an isolated perfused bovine tongue.
    Raaymakers BW; Crezee J; Lagendijk JJ
    Phys Med Biol; 2000 Mar; 45(3):765-80. PubMed ID: 10730970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature simulations in tissue with a realistic computer generated vessel network.
    Van Leeuwen GM; Kotte AN; Raaymakers BW; Lagendijk JJ
    Phys Med Biol; 2000 Apr; 45(4):1035-49. PubMed ID: 10795990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dose uniformity of ferromagnetic seed implants in tissue with discrete vasculature: a numerical study on the impact of seed characteristics and implantation techniques.
    van Wieringen N; Kotte AN; van Leeuwen GM; Lagendijk JJ; van Dijk JD; Nieuwenhuys GJ
    Phys Med Biol; 1998 Jan; 43(1):121-38. PubMed ID: 9483627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the thermal impact of a discrete vessel tree.
    Kotte AN; van Leeuwen GM; Lagendijk JJ
    Phys Med Biol; 1999 Jan; 44(1):57-74. PubMed ID: 10071875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An analytical study of 'Poisson conduction shape factors' for two thermally significant vessels in a finite, heated tissue.
    Shrivastava D; Roemer RB
    Phys Med Biol; 2005 Aug; 50(15):3627-41. PubMed ID: 16030387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards patient specific thermal modelling of the prostate.
    Van den Berg CA; Van de Kamer JB; De Leeuw AA; Jeukens CR; Raaymakers BW; van Vulpen M; Lagendijk JJ
    Phys Med Biol; 2006 Feb; 51(4):809-25. PubMed ID: 16467580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large blood vessel cooling in heated tissues: a numerical study.
    Kolios MC; Sherar MD; Hunt JW
    Phys Med Biol; 1995 Apr; 40(4):477-94. PubMed ID: 7610110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discretizing large traceable vessels and using DE-MRI perfusion maps yields numerical temperature contours that match the MR noninvasive measurements.
    Craciunescu OI; Raaymakers BW; Kotte AN; Das SK; Samulski TV; Lagendijk JJ
    Med Phys; 2001 Nov; 28(11):2289-96. PubMed ID: 11764035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of temperature distributions in interstitial hyperthermia: experiments in bovine tongues versus generic simulations.
    Raaymakers BW; Crezee J; Lagendijk JJ
    Phys Med Biol; 1998 May; 43(5):1199-214. PubMed ID: 9623650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical analysis of the heat convection coefficient in large vessels and the significance for thermal ablative therapies.
    Consiglieri L; dos Santos I; Haemmerich D
    Phys Med Biol; 2003 Dec; 48(24):4125-34. PubMed ID: 14727756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental evaluation of two simple thermal models using transient temperature analysis.
    Kolios MC; Worthington AE; Sherar MD; Hunt JW
    Phys Med Biol; 1998 Nov; 43(11):3325-40. PubMed ID: 9832019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The simulation of discrete vessel effects in experimental hyperthermia.
    Rawnsley RJ; Roemer RB; Dutton AW
    J Biomech Eng; 1994 Aug; 116(3):256-62. PubMed ID: 7799625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility and relevance of discrete vasculature modeling in routine hyperthermia treatment planning.
    Sumser K; Neufeld E; Verhaart RF; Fortunati V; Verduijn GM; Drizdal T; van Walsum T; Veenland JF; Paulides MM
    Int J Hyperthermia; 2019; 36(1):801-811. PubMed ID: 31450989
    [No Abstract]   [Full Text] [Related]  

  • 17. Heat transport mechanisms in vascular tissues: a model comparison.
    Baish JW; Ayyaswamy PS; Foster KR
    J Biomech Eng; 1986 Nov; 108(4):324-31. PubMed ID: 3795877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature evolution in tissues embedded with large blood vessels during photo-thermal heating.
    Paul A; Narasimhan A; Kahlen FJ; Das SK
    J Therm Biol; 2014 Apr; 41():77-87. PubMed ID: 24679976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of heat transfer in a vascular tissue-like medium during an interstitial hyperthermia process.
    Hassanpour S; Saboonchi A
    J Therm Biol; 2016 Dec; 62(Pt B):150-158. PubMed ID: 27888929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An investigation of the flow dependence of temperature gradients near large vessels during steady state and transient tissue heating.
    Kolios MC; Worthington AE; Holdsworth DW; Sherar MD; Hunt JW
    Phys Med Biol; 1999 Jun; 44(6):1479-97. PubMed ID: 10498518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.