BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 11098912)

  • 21. An analytical solution for temperature distributions in hepatic radiofrequency ablation incorporating the heat-sink effect of large vessels.
    Chen R; Lu F; Wu F; Jiang T; Xie L; Kong D
    Phys Med Biol; 2018 Dec; 63(23):235026. PubMed ID: 30511647
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accuracy of geometrical modelling of heat transfer from tissue to blood vessels.
    Van Leeuwen GM; Kotte AN; De Bree J; Van der Koijk JF; Crezee J; Lagendijk JJ
    Phys Med Biol; 1997 Jul; 42(7):1451-60. PubMed ID: 9253052
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heat transfer analysis of skin during thermal therapy using thermal wave equation.
    Kashcooli M; Salimpour MR; Shirani E
    J Therm Biol; 2017 Feb; 64():7-18. PubMed ID: 28166948
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The theoretical and experimental evaluation of the heat balance in perfused tissue.
    Crezee J; Mooibroek J; Lagendijk JJ; van Leeuwen GM
    Phys Med Biol; 1994 May; 39(5):813-32. PubMed ID: 15552087
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of vasculature on temperature distributions in MECS interstitial hyperthermia: importance of longitudinal control.
    van der Koijk JF; Lagendijk JJ; Crezee J; de Bree J; Kotte AN; van Leeuwen GM; Battermann JJ
    Int J Hyperthermia; 1997; 13(4):365-85. PubMed ID: 9278767
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A description of discrete vessel segments in thermal modelling of tissues.
    Kotte A; van Leeuwen G; de Bree J; van der Koijk J; Crezee H; Lagendijk J
    Phys Med Biol; 1996 May; 41(5):865-84. PubMed ID: 8735254
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of diffusion approximation and Monte Carlo based finite element models for simulating thermal responses to laser irradiation in discrete vessels.
    Zhang R; Verkruysse W; Aguilar G; Nelson JS
    Phys Med Biol; 2005 Sep; 50(17):4075-86. PubMed ID: 16177531
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tests of the geometrical description of blood vessels in a thermal model using counter-current geometries.
    Van Leeuwen GM; Kotte AN; Crezee J; Lagendijk JJ
    Phys Med Biol; 1997 Aug; 42(8):1515-32. PubMed ID: 9279903
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mathematical modeling of thermal ablation in tissue surrounding a large vessel.
    Chen X; Saidel GM
    J Biomech Eng; 2009 Jan; 131(1):011001. PubMed ID: 19045917
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Readdressing the issue of thermally significant blood vessels using a countercurrent vessel network.
    Shrivastava D; Roemer RB
    J Biomech Eng; 2006 Apr; 128(2):210-6. PubMed ID: 16524332
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A three-dimensional description of heating patterns in vascularised tissues during hyperthermic treatment.
    Lagendijk JJ; Schellekens M; Schipper J; van der Linden PM
    Phys Med Biol; 1984 May; 29(5):495-507. PubMed ID: 6739541
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of vascular and non-vascular models for the assessment of temperature distribution during induced hyperthermia.
    Brinck H; Werner J
    Int J Hyperthermia; 1995; 11(5):615-26. PubMed ID: 7594813
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A numerical study of rapid heating for high temperature radio frequency hyperthermia.
    Anderson G; Ye X; Henle K; Yang Z; Li G
    Int J Biomed Comput; 1994 May; 35(4):297-307. PubMed ID: 8063456
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Could the heat sink effect of blood flow inside large vessels protect the vessel wall from thermal damage during RF-assisted surgical resection?
    González-Suárez A; Trujillo M; Burdío F; Andaluz A; Berjano E
    Med Phys; 2014 Aug; 41(8):083301. PubMed ID: 25086561
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Errors between two- and three-dimensional thermal model predictions of hyperthermia treatments.
    Chen ZP; Miller WH; Roemer RB; Cetas TC
    Int J Hyperthermia; 1990; 6(1):175-91. PubMed ID: 2299231
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature uniformity during hyperthermia: the impact of large vessels.
    Crezee J; Lagendijk JJ
    Phys Med Biol; 1992 Jun; 37(6):1321-37. PubMed ID: 1626025
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interstitial hyperthermia treatment of countercurrent vascular tissue: a comparison of Pennes, WJ and porous media bioheat models.
    Hassanpour S; Saboonchi A
    J Therm Biol; 2014 Dec; 46():47-55. PubMed ID: 25455940
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of blood vessel on the thermal lesion formation during radiofrequency ablation for liver tumors.
    Huang HW
    Med Phys; 2013 Jul; 40(7):073303. PubMed ID: 23822457
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Thermal effects of a short light flash on biological tissues. I. An optical and thermal model].
    Barun VV; Ivanov AP
    Biofizika; 2004; 49(6):1125-33. PubMed ID: 15612558
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A study of the sink effect by blood vessels in radiofrequency ablation.
    Zorbas G; Samaras T
    Comput Biol Med; 2015 Feb; 57():182-6. PubMed ID: 25575184
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.