These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 11099075)

  • 1. More realistic models of sexually transmitted disease transmission dynamics: sexual partnership networks, pair models, and moment closure.
    Ferguson NM; Garnett GP
    Sex Transm Dis; 2000 Nov; 27(10):600-9. PubMed ID: 11099075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A moment closure model for sexually transmitted disease transmission through a concurrent partnership network.
    Bauch C; Rand DA
    Proc Biol Sci; 2000 Oct; 267(1456):2019-27. PubMed ID: 11075716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concurrency of partnerships, consistency with data, and control of sexually transmitted infections.
    Leng T; Keeling MJ
    Epidemics; 2018 Dec; 25():35-46. PubMed ID: 29798812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A versatile ODE approximation to a network model for the spread of sexually transmitted diseases.
    Bauch CT
    J Math Biol; 2002 Nov; 45(5):375-95. PubMed ID: 12424529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sexual network structure and sexually transmitted disease prevention: a modeling perspective.
    Kretzschmar M
    Sex Transm Dis; 2000 Nov; 27(10):627-35. PubMed ID: 11099078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partnership dynamics in mathematical models and implications for representation of sexually transmitted infections: a review.
    Rao DW; Wheatley MM; Goodreau SM; Enns EA
    Ann Epidemiol; 2021 Jul; 59():72-80. PubMed ID: 33930528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dynamics of sexual contact networks: effects on disease spread and control.
    Robinson K; Cohen T; Colijn C
    Theor Popul Biol; 2012 Mar; 81(2):89-96. PubMed ID: 22248701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measures of concurrency in networks and the spread of infectious disease.
    Kretzschmar M; Morris M
    Math Biosci; 1996 Apr; 133(2):165-95. PubMed ID: 8718707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis and simulation of a stochastic, discrete-individual model of STD transmission with partnership concurrency.
    Chick SE; Adams AL; Koopman JS
    Math Biosci; 2000 Jul; 166(1):45-68. PubMed ID: 10882799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sexually transmitted diseases and sexual behavior: insights from mathematical models.
    Garnett GP; Anderson RM
    J Infect Dis; 1996 Oct; 174 Suppl 2():S150-61. PubMed ID: 8843245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmission of STIs/HIV at the partnership level: beyond individual-level analyses.
    Gorbach PM; Holmes KK
    J Urban Health; 2003 Dec; 80(4 Suppl 3):iii15-25. PubMed ID: 14713668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical models of the transmission and control of sexually transmitted diseases.
    Anderson RM; Garnett GP
    Sex Transm Dis; 2000 Nov; 27(10):636-43. PubMed ID: 11099079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monogamous networks and the spread of sexually transmitted diseases.
    Eames KT; Keeling MJ
    Math Biosci; 2004 Jun; 189(2):115-30. PubMed ID: 15094315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling contact networks and infection transmission in geographic and social space using GERMS.
    Koopman JS; Chick SE; Riolo CS; Adams AL; Wilson ML; Becker MP
    Sex Transm Dis; 2000 Nov; 27(10):617-26. PubMed ID: 11099077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical models of disease transmission: a precious tool for the study of sexually transmitted diseases.
    Boily MC; Mâsse B
    Can J Public Health; 1997; 88(4):255-65. PubMed ID: 9336095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Populations and partnerships: insights from metapopulation and pair models into the epidemiology of gonorrhoea and other sexually transmitted infections.
    Chen MI; Ghani AC
    Sex Transm Infect; 2010 Nov; 86(6):433-9. PubMed ID: 20940155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating the effective rate of sex partner change from individuals with sexually transmitted diseases.
    Nagelkerke NJ; Brunham RC; Moses S; Plummer FA
    Sex Transm Dis; 1994; 21(4):226-30. PubMed ID: 7974075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sexual networks: implications for the transmission of sexually transmitted infections.
    Liljeros F; Edling CR; Nunes Amaral LA
    Microbes Infect; 2003 Feb; 5(2):189-96. PubMed ID: 12650777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epidemiological models for sexually transmitted diseases.
    Dietz K; Hadeler KP
    J Math Biol; 1988; 26(1):1-25. PubMed ID: 3351391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparability of results from pair and classical model formulations for different sexually transmitted infections.
    Ong JB; Fu X; Lee GK; Chen MI
    PLoS One; 2012; 7(6):e39575. PubMed ID: 22761828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.