BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 11099181)

  • 1. Analysis of negative cooperativity for glutamate dehydrogenase.
    Kurganov BI
    Biophys Chem; 2000 Oct; 87(2-3):185-99. PubMed ID: 11099181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New approach to analysis of deviations from hyperbolic law in enzyme kinetics.
    Kurganov BI
    Biochemistry (Mosc); 2000 Aug; 65(8):898-909. PubMed ID: 11002182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of substrate and coenzyme binding to clostridial glutamate dehydrogenase during reductive amination.
    Basso LA; Engel PC; Walmsley AR
    Eur J Biochem; 1995 Dec; 234(2):603-15. PubMed ID: 8536710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homotropic allosteric control in clostridial glutamate dehydrogenase: different mechanisms for glutamate and NAD+?
    Hamza MA; Engel PC
    FEBS Lett; 2008 Jun; 582(13):1816-20. PubMed ID: 18472008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction, separation and properties of hybrid hexamers of glutamate dehydrogenase in which five of the six subunits are contributed by the catalytically inert D165S.
    Hayden BM; Engel PC
    Eur J Biochem; 2001 Mar; 268(5):1173-80. PubMed ID: 11231268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positive cooperativity with Hill coefficients of up to 6 in the glutamate concentration dependence of steady-state reaction rates measured with clostridial glutamate dehydrogenase and the mutant A163G at high pH.
    Wang XG; Engel PC
    Biochemistry; 1995 Sep; 34(36):11417-22. PubMed ID: 7547869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of primary deuterium and 15N isotope effects to deduce the relative rates of steps in the mechanisms of alanine and glutamate dehydrogenases.
    Weiss PM; Chen CY; Cleland WW; Cook PF
    Biochemistry; 1988 Jun; 27(13):4814-22. PubMed ID: 3139028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperativity between trimers of the hexameric glutamate dehydrogenase from Clostridium symbiosum.
    Basso LA; Engel PC; Walmsley AR
    Biochim Biophys Acta; 1998 Feb; 1382(2):345-50. PubMed ID: 9540807
    [No Abstract]   [Full Text] [Related]  

  • 9. Kinetic studies of dogfish liver glutamate dehydrogenase.
    Electricwala AH; Dickinson FM
    Biochem J; 1979 Feb; 177(2):449-59. PubMed ID: 35153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modular coenzyme specificity: a domain-swopped chimera of glutamate dehydrogenase.
    Sharkey MA; Engel PC
    Proteins; 2009 Nov; 77(2):268-78. PubMed ID: 19425107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The binding of NADH and NADPH to bovine-liver glutamate dehydrogenase. Spectroscopic characterisation.
    Delabar JM; Martin SR; Bayley PM
    Eur J Biochem; 1982 Oct; 127(2):367-74. PubMed ID: 7140774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional studies of a glutamate dehydrogenase with known three-dimensional structure: steady-state kinetics of the forward and reverse reactions catalysed by the NAD(+)-dependent glutamate dehydrogenase of Clostridium symbiosum.
    Syed SE; Engel PC; Parker DM
    Biochim Biophys Acta; 1991 Dec; 1115(2):123-30. PubMed ID: 1764463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic-resonance studies of the geometry of bound substrate, coenzyme and activator on bovine-liver glutamate dehydrogenase.
    Zantema A; de Smet MJ; Robillard GT
    Eur J Biochem; 1979 Jun; 96(3):465-76. PubMed ID: 38112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The essential active-site lysines of clostridial glutamate dehydrogenase. A study with pyridoxal-5'-phosphate.
    Lilley KS; Engel PC
    Eur J Biochem; 1992 Jul; 207(2):533-40. PubMed ID: 1633808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of multiple active site domain motions in transient-state component time courses of the Clostridium symbiosum L-glutamate dehydrogenase-catalyzed oxidative deamination reaction.
    Tally JF; Maniscalco SJ; Saha SK; Fisher HF
    Biochemistry; 2002 Sep; 41(37):11284-93. PubMed ID: 12220195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding studies of a spin-labelled oxidized coenzyme to bovine-liver glutamate dehydrogenase.
    Zantema A; Trommer WE; Wenzel H; Robillard GT
    Eur J Biochem; 1977 Jan; 72(1):175-84. PubMed ID: 188656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational changes in bovine-liver glutamate dehydrogenase: a spin-label study.
    Zantema A; Vogel HJ; Robillard GT
    Eur J Biochem; 1979 Jun; 96(3):453-63. PubMed ID: 38111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors affecting the amount and the activity of the glutamate dehydrogenases of Coprinus cinereus.
    Al-Gharawi A; Moore D
    Biochim Biophys Acta; 1977 Jan; 496(1):95-102. PubMed ID: 13862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual nucleotide specificity of bovine glutamate dehydrogenase. The role of negative co-operativity.
    Alex S; Bell JE
    Biochem J; 1980 Nov; 191(2):299-304. PubMed ID: 7236198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steady-state kinetics and transient studies of substrate and coenzyme analogue binding to clostridial glutamate dehydrogenase (GDH) during oxidative deamination.
    Basso LA; Engel PC; Walmsley AR
    Biochem Soc Trans; 1994 Aug; 22(3):319S. PubMed ID: 7821578
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.