BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

628 related articles for article (PubMed ID: 11099386)

  • 1. Characterization of heterodimeric alkaline phosphatases from Escherichia coli: an investigation of intragenic complementation.
    Hehir MJ; Murphy JE; Kantrowitz ER
    J Mol Biol; 2000 Dec; 304(4):645-56. PubMed ID: 11099386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial evolution of an enzyme active site: structural studies of three highly active mutants of Escherichia coli alkaline phosphatase.
    Le Du MH; Lamoure C; Muller BH; Bulgakov OV; Lajeunesse E; Ménez A; Boulain JC
    J Mol Biol; 2002 Mar; 316(4):941-53. PubMed ID: 11884134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations at positions 153 and 328 in Escherichia coli alkaline phosphatase provide insight towards the structure and function of mammalian and yeast alkaline phosphatases.
    Murphy JE; Tibbitts TT; Kantrowitz ER
    J Mol Biol; 1995 Nov; 253(4):604-17. PubMed ID: 7473737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic and structural consequences of replacing the aspartate bridge by asparagine in the catalytic metal triad of Escherichia coli alkaline phosphatase.
    Tibbitts TT; Murphy JE; Kantrowitz ER
    J Mol Biol; 1996 Apr; 257(3):700-15. PubMed ID: 8648634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase.
    Wang J; Stieglitz KA; Kantrowitz ER
    Biochemistry; 2005 Jun; 44(23):8378-86. PubMed ID: 15938627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of a T81A mutation at the subunit interface on catalytic properties of alkaline phosphatase from Escherichia coli.
    Orhanović S; Bucević-Popović V; Pavela-Vrancic M; Vujaklija D; Gamulin V
    Int J Biol Macromol; 2006 Dec; 40(1):54-8. PubMed ID: 16859742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complementation between dimeric mutants as a probe of dimer-dimer interactions in tetrameric dihydrofolate reductase encoded by R67 plasmid of E. coli.
    Dam J; Rose T; Goldberg ME; Blondel A
    J Mol Biol; 2000 Sep; 302(1):235-50. PubMed ID: 10964572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic and X-ray structural studies of a mutant Escherichia coli alkaline phosphatase (His-412-->Gln) at one of the zinc binding sites.
    Ma L; Kantrowitz ER
    Biochemistry; 1996 Feb; 35(7):2394-402. PubMed ID: 8652582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and X-ray structural studies of three mutant E. coli alkaline phosphatases: insights into the catalytic mechanism without the nucleophile Ser102.
    Stec B; Hehir MJ; Brennan C; Nolte M; Kantrowitz ER
    J Mol Biol; 1998 Apr; 277(3):647-62. PubMed ID: 9533886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and mechanism of alkaline phosphatase.
    Coleman JE
    Annu Rev Biophys Biomol Struct; 1992; 21():441-83. PubMed ID: 1525473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of replacing active site residues in a cold-active alkaline phosphatase with those found in its mesophilic counterpart from Escherichia coli.
    Gudjónsdóttir K; Asgeirsson B
    FEBS J; 2008 Jan; 275(1):117-27. PubMed ID: 18067583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Isolation and certain properties of mutant alkaline phosphatase of Escherichia coli].
    Nesmeianova MA; Krupianko VI; Kalinin AE; Kadyrova LIu
    Biokhimiia; 1996 Jan; 61(1):89-99. PubMed ID: 8679783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of rat intestinal alkaline phosphatase--role of crown domain in mammalian alkaline phosphatases.
    Ghosh K; Mazumder Tagore D; Anumula R; Lakshmaiah B; Kumar PP; Singaram S; Matan T; Kallipatti S; Selvam S; Krishnamurthy P; Ramarao M
    J Struct Biol; 2013 Nov; 184(2):182-92. PubMed ID: 24076154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Processing of Escherichia coli alkaline phosphatase: role of the primary structure of the signal peptide cleavage region.
    Karamyshev AL; Karamysheva ZN; Kajava AV; Ksenzenko VN; Nesmeyanova MA
    J Mol Biol; 1998 Apr; 277(4):859-70. PubMed ID: 9545377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the gene for the monomeric alkaline phosphatase of Vibrio cholerae serogroup O1 strain.
    Majumdar A; Ghatak A; Ghosh RK
    Gene; 2005 Jan; 344():251-8. PubMed ID: 15656991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rate-determining step of Escherichia coli alkaline phosphatase altered by the removal of a positive charge at the active center.
    Sun L; Martin DC; Kantrowitz ER
    Biochemistry; 1999 Mar; 38(9):2842-8. PubMed ID: 10052956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active site of 5-aminolevulinate synthase resides at the subunit interface. Evidence from in vivo heterodimer formation.
    Tan D; Ferreira GC
    Biochemistry; 1996 Jul; 35(27):8934-41. PubMed ID: 8688429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A bipartite polymerase-processivity factor interaction: only the internal beta binding site of the alpha subunit is required for processive replication by the DNA polymerase III holoenzyme.
    Dohrmann PR; McHenry CS
    J Mol Biol; 2005 Jul; 350(2):228-39. PubMed ID: 15923012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Analysis of the effect of replacing Lys(-20) in the alkaline phosphatase signal peptide on secretion of this enzyme].
    Karamysheva ZN; Karamyshev AL; Ksenzenko VN; Nesmeianova MA
    Biokhimiia; 1996 Apr; 61(4):745-54. PubMed ID: 8724791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Ala-161-->Thr substitution in Escherichia coli alkaline phosphatase does not result in loss of enzymatic activity although the homologous mutation in humans causes hypophosphatasia.
    Chaidaroglou A; Kantrowitz ER
    Biochem Biophys Res Commun; 1993 Jun; 193(3):1104-9. PubMed ID: 8323535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.