These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 11099774)

  • 1. Auditory cues support place navigation in rats when associated with a visual cue.
    Rossier J; Haeberli C; Schenk F
    Behav Brain Res; 2000 Dec; 117(1-2):209-14. PubMed ID: 11099774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequential control of navigation by locale and taxon cues in the Morris water task.
    Hamilton DA; Rosenfelt CS; Whishaw IQ
    Behav Brain Res; 2004 Oct; 154(2):385-97. PubMed ID: 15313026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in cue-dependent spatial navigation may be revealed by in-depth swimming analysis.
    Harvey DR; Brant L; Commins S
    Behav Processes; 2009 Oct; 82(2):190-7. PubMed ID: 19576274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The postrhinal cortex is not necessary for landmark control in rat head direction cells.
    Peck JR; Taube JS
    Hippocampus; 2017 Feb; 27(2):156-168. PubMed ID: 27860052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Objects and landmarks: hippocampal place cells respond differently to manipulations of visual cues depending on size, perspective, and experience.
    Scaplen KM; Gulati AA; Heimer-McGinn VL; Burwell RD
    Hippocampus; 2014 Nov; 24(11):1287-99. PubMed ID: 25045010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superior colliculus and active navigation: role of visual and non-visual cues in controlling cellular representations of space.
    Cooper BG; Miya DY; Mizumori SJ
    Hippocampus; 1998; 8(4):340-72. PubMed ID: 9744421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholinergic receptor blockade in the rat impairs locale but not taxon strategies for place navigation in a swimming pool.
    Whishaw IQ
    Behav Neurosci; 1985 Oct; 99(5):979-1005. PubMed ID: 3843314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rats with lesions of the vestibular system require a visual landmark for spatial navigation.
    Stackman RW; Herbert AM
    Behav Brain Res; 2002 Jan; 128(1):27-40. PubMed ID: 11755687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Similarities in the development of place and cue navigation by rats in a swimming pool.
    Brown RW; Whishaw IQ
    Dev Psychobiol; 2000 Dec; 37(4):238-45. PubMed ID: 11084605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impairments in the acquisition, retention and selection of spatial navigation strategies after medial caudate-putamen lesions in rats.
    Whishaw IQ; Mittleman G; Bunch ST; Dunnett SB
    Behav Brain Res; 1987 May; 24(2):125-38. PubMed ID: 3593524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lesions of the dorsal tegmental nuclei disrupt control of navigation by distal landmarks in cued, directional, and place variants of the Morris water task.
    Clark BJ; Rice JP; Akers KG; Candelaria-Cook FT; Taube JS; Hamilton DA
    Behav Neurosci; 2013 Aug; 127(4):566-81. PubMed ID: 23731069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deficits in landmark navigation and path integration after lesions of the interpeduncular nucleus.
    Clark BJ; Taube JS
    Behav Neurosci; 2009 Jun; 123(3):490-503. PubMed ID: 19485555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rats with hippocampal lesions learn about allocentric place cues in a non-navigational task.
    Gaffan EA; Bannerman DM; Healey AN
    Behav Neurosci; 2000 Oct; 114(5):895-906. PubMed ID: 11085603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of salient and non-salient visuospatial cues by rats in the Morris Water Maze.
    Young GS; Choleris E; Kirkland JB
    Physiol Behav; 2006 Apr; 87(4):794-9. PubMed ID: 16516936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of a hallucinogenic serotonin 5-HT
    Zhang G; Cinalli D; Stackman RW
    Hippocampus; 2017 May; 27(5):558-569. PubMed ID: 28176400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retrosplenial Cortical Neurons Encode Navigational Cues, Trajectories and Reward Locations During Goal Directed Navigation.
    Vedder LC; Miller AMP; Harrison MB; Smith DM
    Cereb Cortex; 2017 Jul; 27(7):3713-3723. PubMed ID: 27473323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial reorientation with non-visual cues: Failure to spontaneously use auditory information.
    Nardi D; Anzures BJ; Clark JM; Griffith BV
    Q J Exp Psychol (Hove); 2019 May; 72(5):1141-1154. PubMed ID: 29776317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cued platform training reveals early development of directional responding among preweanling rats in the Morris water task.
    Akers KG; Candelaria-Cook FT; Rice JP; Johnson TE; Hamilton DA
    Dev Psychobiol; 2011 Jan; 53(1):1-12. PubMed ID: 20687138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A room with a view and a polarizing cue: individual differences in the stimulus control of place navigation and passive latent learning in the water maze.
    Devan BD; Petri HL; Mishkin M; Stouffer EM; Bowker JL; Yin PB; Buffalari DM; Olds JL
    Neurobiol Learn Mem; 2002 Jul; 78(1):79-99. PubMed ID: 12071669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How you get there from here: interaction of visual landmarks and path integration in human navigation.
    Zhao M; Warren WH
    Psychol Sci; 2015 Jun; 26(6):915-24. PubMed ID: 25944773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.