These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 11099803)

  • 1. Reverse micelles as reaction media for lipases.
    Carvalho CM; Cabral JM
    Biochimie; 2000 Nov; 82(11):1063-85. PubMed ID: 11099803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversed micelle solvents as tools of enzyme purification and enzyme-catalyzed conversion.
    Tonova K; Lazarova Z
    Biotechnol Adv; 2008; 26(6):516-32. PubMed ID: 18639624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipase Catalysis in Presence of Nonionic Surfactants.
    Goswami D
    Appl Biochem Biotechnol; 2020 Jun; 191(2):744-762. PubMed ID: 31853875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvent Tolerance Improvement of Lipases Enhanced Their Applications: State of the Art.
    Chen M; Jin T; Nian B; Cheng W
    Molecules; 2024 May; 29(11):. PubMed ID: 38893320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micellar Enzymology for Thermal, pH, and Solvent Stability.
    Minteer SD
    Methods Mol Biol; 2017; 1504():19-23. PubMed ID: 27770411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Higher order structure of Mucor miehei lipase and micelle size in cetyltrimethylammonium bromide reverse micellar system.
    Naoe K; Takeuchi C; Kawagoe M; Nagayama K; Imai M
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 May; 850(1-2):277-84. PubMed ID: 17169622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic and kinetic studies of lipases solubilized in reverse micelles.
    Walde P; Han D; Luisi PL
    Biochemistry; 1993 Apr; 32(15):4029-34. PubMed ID: 7682440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of p-nitrophenyl acetate hydrolysis catalyzed by Mucor javanicus lipase in AOT reverse micellar solutions formulated in different organic solvents.
    Abuin E; Lissi E; Biasutti MA; Duarte R
    Protein J; 2007 Oct; 26(7):475-9. PubMed ID: 17522967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A procedure for the joint evaluation of substrate partitioning and kinetic parameters for reactions catalyzed by enzymes in reverse micellar solutions. I. Hydrolysis of 2-naphthyl acetate catalyzed by lipase in sodium 1,4-bis(2-ethylhexyl) sulphosuccinate (AOT)/buffer/heptane.
    Aguilar LF; Abuin E; Lissi E
    Arch Biochem Biophys; 2001 Apr; 388(2):231-6. PubMed ID: 11368159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal deactivation kinetics of Pseudomonas fluorescens lipase entrapped in AOT/isooctane reverse micelles.
    Park KM; Kwon CW; Choi SJ; Son YH; Lim S; Yoo Y; Chang PS
    J Agric Food Chem; 2013 Oct; 61(39):9421-7. PubMed ID: 23984828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial lipases: at the interface of aqueous and non-aqueous media. A review.
    Verma ML; Azmi W; Kanwar SS
    Acta Microbiol Immunol Hung; 2008 Sep; 55(3):265-94. PubMed ID: 18800594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of gold nanoparticles of varying size in improving the lipase activity within cationic reverse micelles.
    Maiti S; Das D; Shome A; Das PK
    Chemistry; 2010 Feb; 16(6):1941-50. PubMed ID: 20013961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of lignin peroxidase in organic media by reversed micelles.
    Kimura M; Michizoe J; Oakazaki SY; Furusaki S; Goto M; Tanaka H; Wariishi H
    Biotechnol Bioeng; 2004 Nov; 88(4):495-501. PubMed ID: 15459910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometric constraints at the surfactant headgroup: effect on lipase activity in cationic reverse micelles.
    Mitra RN; Dasgupta A; Das D; Roy S; Debnath S; Das PK
    Langmuir; 2005 Dec; 21(26):12115-23. PubMed ID: 16342982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics and stability of a Chromobacterium viscosum lipase in reversed micellar and aqueous media.
    Prazeres DM; Garcia FA; Cabral JM
    J Chem Technol Biotechnol; 1992; 53(2):159-64. PubMed ID: 1368011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of urea on the enzymatic activity of a lipase entrapped in AOT-heptane-water reverse micellar solutions.
    Abuin E; Lissi E; Solar C
    J Colloid Interface Sci; 2005 Mar; 283(1):87-93. PubMed ID: 15694427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilisation and application of lipases in organic media.
    Adlercreutz P
    Chem Soc Rev; 2013 Aug; 42(15):6406-36. PubMed ID: 23403895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipase catalyzed esterification in AOT reverse micelles: a structural study.
    Papadimitriou V; Petit C; Cassin G; Xenakis A; Pileni MP
    Adv Colloid Interface Sci; 1995 Jan; 54():1-16. PubMed ID: 7832997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of hydrated reversed micelles of surfactant in organic solvent for stabilization of individual oligomeric forms of uridine phosphorylase from Escherichia coli K-12.
    Burlakova AA; Kurganov BI; Chebotareva NA; Debabov VG
    Membr Cell Biol; 1997; 10(5):543-51. PubMed ID: 9225258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent stable microbial lipases: current understanding and biotechnological applications.
    Priyanka P; Tan Y; Kinsella GK; Henehan GT; Ryan BJ
    Biotechnol Lett; 2019 Feb; 41(2):203-220. PubMed ID: 30535639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.