These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 11100152)
21. Preserved recognition memory for small sets, and impaired stimulus identification for large sets, following rhinal cortex ablations in monkeys. Eacott MJ; Gaffan D; Murray EA Eur J Neurosci; 1994 Sep; 6(9):1466-78. PubMed ID: 8000570 [TBL] [Abstract][Full Text] [Related]
22. Neuronal signals in the monkey basolateral amygdala during reward schedules. Sugase-Miyamoto Y; Richmond BJ J Neurosci; 2005 Nov; 25(48):11071-83. PubMed ID: 16319307 [TBL] [Abstract][Full Text] [Related]
23. The role of perirhinal cortex in visual discrimination learning for visual secondary reinforcement in rats. Eacott MJ; Norman G; Gaffan EA Behav Neurosci; 2003 Dec; 117(6):1318-25. PubMed ID: 14674850 [TBL] [Abstract][Full Text] [Related]
24. Coding for visual categories in the human brain. Gross CG Nat Neurosci; 2000 Sep; 3(9):855-6. PubMed ID: 10966610 [No Abstract] [Full Text] [Related]
25. Activity and distribution of learning-related neurons in monkey (Macaca fuscata) prefrontal cortex. Yamatani K; Ono T; Nishijo H; Takaku A Behav Neurosci; 1990 Aug; 104(4):503-31. PubMed ID: 2206423 [TBL] [Abstract][Full Text] [Related]
26. Inferotemporal neurons represent low-dimensional configurations of parameterized shapes. Op de Beeck H; Wagemans J; Vogels R Nat Neurosci; 2001 Dec; 4(12):1244-52. PubMed ID: 11713468 [TBL] [Abstract][Full Text] [Related]
27. Impact of expected reward on neuronal activity in prefrontal cortex, frontal and supplementary eye fields and premotor cortex. Roesch MR; Olson CR J Neurophysiol; 2003 Sep; 90(3):1766-89. PubMed ID: 12801905 [TBL] [Abstract][Full Text] [Related]
28. Dissociation between the effects of damage to perirhinal cortex and area TE. Buffalo EA; Ramus SJ; Clark RE; Teng E; Squire LR; Zola SM Learn Mem; 1999; 6(6):572-99. PubMed ID: 10641763 [TBL] [Abstract][Full Text] [Related]
30. Interaction of frontal and perirhinal cortices in visual object recognition memory in monkeys. Parker A; Gaffan D Eur J Neurosci; 1998 Oct; 10(10):3044-57. PubMed ID: 9786199 [TBL] [Abstract][Full Text] [Related]
31. Two distinct modes of sensory processing observed in monkey primary visual cortex (V1). Supèr H; Spekreijse H; Lamme VA Nat Neurosci; 2001 Mar; 4(3):304-10. PubMed ID: 11224548 [TBL] [Abstract][Full Text] [Related]
32. Perirhinal cortex removal dissociates two memory systems in matching-to-sample performance in rhesus monkeys. Tu HW; Hampton RR; Murray EA J Neurosci; 2011 Nov; 31(45):16336-43. PubMed ID: 22072685 [TBL] [Abstract][Full Text] [Related]
33. Effects of reward expectancy on sequential eye movements in monkeys. Sohn JW; Lee D Neural Netw; 2006 Oct; 19(8):1181-91. PubMed ID: 16935467 [TBL] [Abstract][Full Text] [Related]
34. Anterior cingulate: single neuronal signals related to degree of reward expectancy. Shidara M; Richmond BJ Science; 2002 May; 296(5573):1709-11. PubMed ID: 12040201 [TBL] [Abstract][Full Text] [Related]
35. Object and place memory in the macaque entorhinal cortex. Suzuki WA; Miller EK; Desimone R J Neurophysiol; 1997 Aug; 78(2):1062-81. PubMed ID: 9307135 [TBL] [Abstract][Full Text] [Related]
36. Effects of combined and separate removals of rostral dorsal superior temporal sulcus cortex and perirhinal cortex on visual recognition memory in rhesus monkeys. Hadfield WS; Baxter MG; Murray EA J Neurophysiol; 2003 Oct; 90(4):2419-27. PubMed ID: 12826654 [TBL] [Abstract][Full Text] [Related]