BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 11100882)

  • 1. Interaction between host T cells and Reed-Sternberg cells in Hodgkin lymphomas.
    Poppema S; van den Berg A
    Semin Cancer Biol; 2000 Oct; 10(5):345-50. PubMed ID: 11100882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immune reactions in classical Hodgkin's lymphoma.
    Poppema S; Potters M; Emmens R; Visser L; van den Berg A
    Semin Hematol; 1999 Jul; 36(3):253-9. PubMed ID: 10462325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reed-Sternberg cell: survival in a hostile sea.
    Cossman J; Messineo C; Bagg A
    Lab Invest; 1998 Mar; 78(3):229-35. PubMed ID: 9520936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential expression of chemokines, chemokine receptors, cytokines and cytokine receptors in diffuse large B cell malignant lymphoma.
    Fujii A; Ohshima K; Hamasaki M; Makimoto Y; Haraoka S; Utsunomiya H; Okazaki M; Kikuchi M
    Int J Oncol; 2004 Mar; 24(3):529-38. PubMed ID: 14767537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Current views of the histogenesis and pathogenesis of Hodgkin lymphoma].
    Leenman EE
    Arkh Patol; 2007; 69(5):7-11. PubMed ID: 18074812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Hodgkin and Reed/Sternberg cell.
    Küppers R; Hansmann ML
    Int J Biochem Cell Biol; 2005 Mar; 37(3):511-7. PubMed ID: 15618006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Biology and differentiation of lymphocytes in the classification of lymphomas].
    Mariuzzi G; Di Loreto C; Mariuzzi L
    Recenti Prog Med; 1990 Oct; 81(10):621-8. PubMed ID: 2291005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The classical Hodgkin's lymphoma microenvironment and its role in promoting tumour growth and immune escape.
    Aldinucci D; Gloghini A; Pinto A; De Filippi R; Carbone A
    J Pathol; 2010 Jul; 221(3):248-63. PubMed ID: 20527019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of cytokine and chemokine genes in Epstein-Barr virus-associated nasopharyngeal carcinoma: comparison with Hodgkin's disease.
    Beck A; Päzolt D; Grabenbauer GG; Nicholls JM; Herbst H; Young LS; Niedobitek G
    J Pathol; 2001 Jun; 194(2):145-51. PubMed ID: 11400141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Hodgkin's disease: biology can help the physician towards new prognostic factors and new therapeutic approaches].
    Rubio MT; Ghesquières H; Blay JY; Salles G
    Bull Cancer; 2001 Nov; 88(11):1081-90. PubMed ID: 11741802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of human allergic T-helper type 2 immune responses by induced regulatory T cells requires the combination of interleukin-10-treated dendritic cells and transforming growth factor-beta for their induction.
    Bellinghausen I; König B; Böttcher I; Knop J; Saloga J
    Clin Exp Allergy; 2006 Dec; 36(12):1546-55. PubMed ID: 17177678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The biological environment of Hodgkin's lymphoma and the role of the chemokine CCL17/TARC.
    Hnátková M; Mociková H; Trnený M; Zivný J
    Prague Med Rep; 2009; 110(1):35-41. PubMed ID: 19591376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immune escape mechanisms in Hodgkin's disease.
    Poppema S; Potters M; Visser L; van den Berg AM
    Ann Oncol; 1998; 9 Suppl 5():S21-4. PubMed ID: 9926233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skewing of cytotoxic activity and chemokine production, but not of chemokine receptor expression, in human type-1/-2 gamma delta T lymphocytes.
    Dagna L; Iellem A; Biswas P; Resta D; Tantardini F; Fortis C; Sabbadini MG; D'Ambrosio D; Manfredi AA; Ferrarini M
    Eur J Immunol; 2002 Oct; 32(10):2934-43. PubMed ID: 12355447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative flow immunophenotypic features of the inflammatory infiltrates of Hodgkin lymphoma and lymphoid hyperplasia.
    Hudnall SD; Betancourt E; Barnhart E; Patel J
    Cytometry B Clin Cytom; 2008 Jan; 74(1):1-8. PubMed ID: 18061945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hodgkin's reed-sternberg cell line (KM-H2) promotes a bidirectional differentiation of CD4+CD25+Foxp3+ T cells and CD4+ cytotoxic T lymphocytes from CD4+ naive T cells.
    Tanijiri T; Shimizu T; Uehira K; Yokoi T; Amuro H; Sugimoto H; Torii Y; Tajima K; Ito T; Amakawa R; Fukuhara S
    J Leukoc Biol; 2007 Sep; 82(3):576-84. PubMed ID: 17545218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunobiology and pathophysiology of Hodgkin lymphomas.
    Poppema S
    Hematology Am Soc Hematol Educ Program; 2005; ():231-8. PubMed ID: 16304386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarized subsets of human T-helper cells induce distinct patterns of chemokine production by normal and systemic sclerosis dermal fibroblasts.
    Chizzolini C; Parel Y; Scheja A; Dayer JM
    Arthritis Res Ther; 2006; 8(1):R10. PubMed ID: 16356198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunophenotype of Reed-Sternberg cells.
    Hugh J; Poppema S
    Int Rev Exp Pathol; 1992; 33():81-114. PubMed ID: 1733873
    [No Abstract]   [Full Text] [Related]  

  • 20. Interleukin-1 and tumor necrosis factor-alpha in the Reed-Sternberg cells of Hodgkin's disease. Correlation with clinical and morphological "inflammatory" features.
    Benharroch D; Prinsloo I; Apte RN; Yermiahu T; Geffen DB; Yanai-Inbar I; Gopas J
    Eur Cytokine Netw; 1996; 7(1):51-7. PubMed ID: 8704095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.