These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 11100908)

  • 1. Relationships between steady state blood concentrations and cardiac output during intravenous infusions.
    Upton RN
    Biopharm Drug Dispos; 2000 Mar; 21(2):69-76. PubMed ID: 11100908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship of apparent systemic clearance to individual organ clearances: effect of pulmonary clearance and site of drug administration and measurement.
    Mehvar R
    Pharm Res; 1991 Mar; 8(3):306-12. PubMed ID: 2052516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpretation of nitrate plasma concentrations. Effect of cardiac output on nitroglycerin pharmacokinetics in experimental animals.
    Fung HL; Blei A; Chong S
    Eur Heart J; 1988 Jan; 9 Suppl A():39-43. PubMed ID: 3137071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiac output is an apparent determinant of nitroglycerin pharmacokinetics in rats.
    Fung HL; Blei A; Chong S
    J Pharmacol Exp Ther; 1986 Dec; 239(3):701-5. PubMed ID: 3098960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of lungs to total body clearance: linear and nonlinear effects.
    Collins JM; Dedrick RL
    J Pharm Sci; 1982 Jan; 71(1):66-70. PubMed ID: 7057383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The physiological significance of total body clearance in pharmacokinetic studies.
    Chiou WL
    J Clin Hosp Pharm; 1982 Mar; 7(1):25-30. PubMed ID: 7096575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Sampling Site and Fluid Flow on the Accuracy of Total Body Clearance Calculation.
    LaPorte B; Musteata FM
    J Pharm Sci; 2020 Jun; 109(6):2079-2089. PubMed ID: 32169313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dobutamine pharmacokinetics and pharmacodynamics in pediatric intensive care patients.
    Habib DM; Padbury JF; Anas NG; Perkin RM; Minegar C
    Crit Care Med; 1992 May; 20(5):601-8. PubMed ID: 1572184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conceptual underestimation of the total body clearance by the sum of clearances of individual organs in physiologically based pharmacokinetics.
    Berezhkovskiy LM
    J Pharm Sci; 2012 Dec; 101(12):4660-5. PubMed ID: 23001916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the accuracy of estimation of basic pharmacokinetic parameters by the traditional noncompartmental equations and the prediction of the steady-state volume of distribution in obese patients based upon data derived from normal subjects.
    Berezhkovskiy LM
    J Pharm Sci; 2011 Jun; 100(6):2482-97. PubMed ID: 21254063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steady-state nonlinear pharmacokinetics of 5-fluorouracil during hepatic arterial and intravenous infusions in cancer patients.
    Wagner JG; Gyves JW; Stetson PL; Walker-Andrews SC; Wollner IS; Cochran MK; Ensminger WD
    Cancer Res; 1986 Mar; 46(3):1499-506. PubMed ID: 3943107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clearance and bioavailability study through arterio-venous drug concentrations relationship.
    Fagiolino P; Vázquez M; Eiraldi R
    Eur J Pharm Sci; 2013 Mar; 48(4-5):825-9. PubMed ID: 23402973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional pharmacokinetics of amifostine in anesthetized dogs: role of the liver, gastrointestinal tract, lungs, and kidneys.
    Levi M; Knol JA; Ensminger WD; DeRemer SJ; Dou C; Lunte SM; Bonner HS; Shaw LM; Smith DE
    Drug Metab Dispos; 2002 Dec; 30(12):1425-30. PubMed ID: 12433814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clevidipine: a review of its use in the management of acute hypertension.
    Deeks ED; Keating GM; Keam SJ
    Am J Cardiovasc Drugs; 2009; 9(2):117-34. PubMed ID: 19331440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epinephrine, norepinephrine and dopamine infusions decrease propofol concentrations during continuous propofol infusion in an ovine model.
    Myburgh JA; Upton RN; Grant C; Martinez A
    Intensive Care Med; 2001 Jan; 27(1):276-82. PubMed ID: 11280648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The two-compartment recirculatory pharmacokinetic model--an introduction to recirculatory pharmacokinetic concepts.
    Upton RN
    Br J Anaesth; 2004 Apr; 92(4):475-84. PubMed ID: 14766714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of drug terminal half-life and terminal volume of distribution after intravenous dosing based on drug clearance, steady-state volume of distribution, and physiological parameters of the body.
    Berezhkovskiy LM
    J Pharm Sci; 2013 Feb; 102(2):761-71. PubMed ID: 23233148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacokinetics of prostaglandins: prediction of steady-state concentrations during intravenous infusion.
    Weiss M; Förster W
    Int J Clin Pharmacol Ther Toxicol; 1980; 18(8):344-7. PubMed ID: 7409936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of differential drug pharmacokinetics under heat and exercise stress using a physiologically based pharmacokinetic modeling approach.
    Sidhu P; Peng HT; Cheung B; Edginton A
    Can J Physiol Pharmacol; 2011 May; 89(5):365-82. PubMed ID: 21627485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of cardiac output on plasma propofol concentrations during constant infusion in swine.
    Kurita T; Morita K; Kazama T; Sato S
    Anesthesiology; 2002 Jun; 96(6):1498-503. PubMed ID: 12170066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.