These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 11100922)

  • 1. Effects of soil type upon metolachlor losses in subsurface drainage.
    Novak SM; Portal JM; Schiavon M
    Chemosphere; 2001 Jan; 42(3):235-44. PubMed ID: 11100922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fate of autumn-applied metolachlor in a clay loam in the northern U.S. Corn Belt.
    Sharratt B; Sander K; Tierney D
    J Environ Sci Health B; 2003 Jan; 38(1):37-48. PubMed ID: 12602822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alachlor and bentazone losses from subsurface drainage of two soils.
    Dousset S; Babut M; Andreux F; Schiavon M
    J Environ Qual; 2004; 33(1):294-301. PubMed ID: 14964384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Movement of metolachlor and terbuthylazine in core and packed soil columns.
    Singh N; Kloeppel H; Klein W
    Chemosphere; 2002 Apr; 47(4):409-15. PubMed ID: 11999617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of redox conditions on metolachlor and metribuzin degradation in Mississippi flood plain soils.
    Mulbach CK; Porthouse JD; Jugsujinda A; DeLaune RD; Johnson AB
    J Environ Sci Health B; 2000 Nov; 35(6):689-704. PubMed ID: 11069013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Runoff and leaching of metolachlor from Mississippi River alluvial soil during seasons of average and below-average rainfall.
    Southwick LM; Appelboom TW; Fouss JL
    J Agric Food Chem; 2009 Feb; 57(4):1413-20. PubMed ID: 19178284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Runoff of trifluralin, metolachlor, and metribuzin from a clay loam soil of Louisiana.
    Kim JH; Feagley SE
    J Environ Sci Health B; 2002 Sep; 37(5):405-15. PubMed ID: 12369759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of subsurface drains on runoff losses of metolachlor and trifluralin from Mississippi River alluvial soil.
    Southwick LM; Willis GH; Mercado OA; Bengtson RL
    Arch Environ Contam Toxicol; 1997 Jan; 32(1):106-9. PubMed ID: 9002441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation and persistence of metolachlor in soil: effects of concentration, soil moisture, soil depth, and sterilization.
    Rice PJ; Anderson TA; Coats JR
    Environ Toxicol Chem; 2002 Dec; 21(12):2640-8. PubMed ID: 12463559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaching of trifluralin, metolachlor, and metribuzin in a clay loam soil of Louisiana.
    Kim JH; Feagley SE
    J Environ Sci Health B; 2002 Sep; 37(5):393-403. PubMed ID: 12369758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atrazine and metolachlor in surface runoff under typical rainfall conditions in southern Louisiana.
    Southwick LM; Grigg BC; Fouss JL; Kornecki TS
    J Agric Food Chem; 2003 Aug; 51(18):5355-61. PubMed ID: 12926883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation and transport of the sulfonic acid metabolites of alachlor and metolachlor in soil.
    Aga DS; Thurman EM
    Environ Sci Technol; 2001 Jun; 35(12):2455-60. PubMed ID: 11432548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Runoff and drainage losses of atrazine, metribuzin, and metolachlor in three water management systems.
    Gaynor JD; Tan CS; Drury CF; Welacky TW; Ng HY; Reynolds WD
    J Environ Qual; 2002; 31(1):300-8. PubMed ID: 11841063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biotransformation of atrazine and metolachlor within soil profile and changes in microbial communities.
    Vryzas Z; Papadakis EN; Oriakli K; Moysiadis TP; Papadopoulou-Mourkidou E
    Chemosphere; 2012 Nov; 89(11):1330-8. PubMed ID: 22739544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous assessment of sources, processes, and factors influencing herbicide losses to surface waters in a small agricultural catchment.
    Leu C; Singer H; Stamm C; Müller SR; Schwarzenbach RP
    Environ Sci Technol; 2004 Jul; 38(14):3827-34. PubMed ID: 15298189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leaching of atrazine, metolachlor and diuron in the field in relation to their injection depth into a silt loam soil.
    Delphin JE; Chapot JY
    Chemosphere; 2006 Sep; 64(11):1862-9. PubMed ID: 16524619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residues of metolachlor herbicide in soil and potato tubers under Indian tropical conditions.
    Singh SB; Yaduraju NT; Kulshrestha G
    Bull Environ Contam Toxicol; 1997 Aug; 59(2):216-21. PubMed ID: 9211691
    [No Abstract]   [Full Text] [Related]  

  • 18. Tillage, intercrop, and controlled drainage-subirrigation influence atrazine, metribuzin, and metolachlor loss.
    Gaynor JD; Tan CS; Drury CF; Ng HY; Welacky TW; van Wesenbeeck IJ
    J Environ Qual; 2001; 30(2):561-72. PubMed ID: 11285918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissipation of terbuthylazine, metolachlor, and mesotrione in soils with contrasting texture.
    Carretta L; Cardinali A; Marotta E; Zanin G; Masin R
    J Environ Sci Health B; 2018; 53(10):661-668. PubMed ID: 29842837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced surface runoff losses of metolachlor in narrow-row compared to wide-row soybean.
    Krutz LJ; Koger CH; Locke MA; Steinriede RW
    J Environ Qual; 2007; 36(5):1331-7. PubMed ID: 17636295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.