These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11101142)

  • 41. Expression of ClpB, an analog of the ATP-dependent protease regulatory subunit in Escherichia coli, is controlled by a heat shock sigma factor (sigma 32).
    Kitagawa M; Wada C; Yoshioka S; Yura T
    J Bacteriol; 1991 Jul; 173(14):4247-53. PubMed ID: 1906060
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional regions of rice heat shock protein, Oshsp16.9, required for conferring thermotolerance in Escherichia coli.
    Yeh CH; Chen YM; Lin CY
    Plant Physiol; 2002 Feb; 128(2):661-8. PubMed ID: 11842169
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis.
    Lee JH; Hübel A; Schöffl F
    Plant J; 1995 Oct; 8(4):603-12. PubMed ID: 7496404
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular cloning and characterization of genes encoding Pennisetum glaucum ascorbate peroxidase and heat-shock factor: interlinking oxidative and heat-stress responses.
    Reddy RA; Kumar B; Reddy PS; Mishra RN; Mahanty S; Kaul T; Nair S; Sopory SK; Reddy MK
    J Plant Physiol; 2009 Oct; 166(15):1646-59. PubMed ID: 19450902
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tobacco class I cytosolic small heat shock proteins are under transcriptional and translational regulations in expression and heterocomplex prevails under the high-temperature stress condition in vitro.
    Park SM; Kim KP; Joe MK; Lee MO; Koo HJ; Hong CB
    Plant Cell Environ; 2015 Apr; 38(4):767-76. PubMed ID: 25158805
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gut myoelectrical activity induces heat shock response in Escherichia coli and Caco-2 cells.
    Laubitz D; Jankowska A; Sikora A; Woliński J; Zabielski R; Grzesiuk E
    Exp Physiol; 2006 Sep; 91(5):867-75. PubMed ID: 16728456
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular characterization of Oryza sativa 16.9 kDa heat shock protein.
    Young LS; Yeh CH; Chen YM; Lin CY
    Biochem J; 1999 Nov; 344 Pt 1(Pt 1):31-8. PubMed ID: 10548530
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Protein solubility and differential proteomic profiling of recombinant Escherichia coli overexpressing double-tagged fusion proteins.
    Cheng CH; Lee WC
    Microb Cell Fact; 2010 Aug; 9():63. PubMed ID: 20799977
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulation and mechanism of action of the small heat shock protein from the hyperthermophilic archaeon Pyrococcus furiosus.
    Laksanalamai P; Maeder DL; Robb FT
    J Bacteriol; 2001 Sep; 183(17):5198-202. PubMed ID: 11489874
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mutations altering heat shock specific subunit of RNA polymerase suppress major cellular defects of E. coli mutants lacking the DnaK chaperone.
    Bukau B; Walker GC
    EMBO J; 1990 Dec; 9(12):4027-36. PubMed ID: 2249663
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reversible heat-induced inactivation of chimeric beta-glucuronidase in transgenic plants.
    Almoguera C; Rojas A; Jordano J
    Plant Physiol; 2002 May; 129(1):333-41. PubMed ID: 12011363
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of heating rate on Escherichia coli metabolism, physiological stress, transcriptional response, and production of temperature-induced recombinant protein: a scale-down study.
    Caspeta L; Flores N; Pérez NO; Bolívar F; Ramírez OT
    Biotechnol Bioeng; 2009 Feb; 102(2):468-82. PubMed ID: 18767190
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Heat shock regulatory gene (htpR) of Escherichia coli is required for growth at high temperature but is dispensable at low temperature.
    Yura T; Tobe T; Ito K; Osawa T
    Proc Natl Acad Sci U S A; 1984 Nov; 81(21):6803-7. PubMed ID: 6387714
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Investigation of TtrD, an expressing recombinant fusion tag, in Escherichia coli.
    Chen A; Zhang L; Gu S; Tang R; Xie Y; Ji C
    Protein Expr Purif; 2016 Apr; 120():65-71. PubMed ID: 26690374
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Induction of a small heat shock protein and its functional roles in Nicotiana plants in the defense response against Ralstonia solanacearum.
    Maimbo M; Ohnishi K; Hikichi Y; Yoshioka H; Kiba A
    Plant Physiol; 2007 Dec; 145(4):1588-99. PubMed ID: 17965181
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Expression of RcHSP70, heat shock protein 70 gene from Chinese rose, enhances host resistance to abiotic stresses.
    Jiang C; Bi Y; Zhang R; Feng S
    Sci Rep; 2020 Feb; 10(1):2445. PubMed ID: 32051436
    [TBL] [Abstract][Full Text] [Related]  

  • 57. ClpB and HtpG facilitate de novo protein folding in stressed Escherichia coli cells.
    Thomas JG; Baneyx F
    Mol Microbiol; 2000 Jun; 36(6):1360-70. PubMed ID: 10931286
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cellular defects caused by deletion of the Escherichia coli dnaK gene indicate roles for heat shock protein in normal metabolism.
    Bukau B; Walker GC
    J Bacteriol; 1989 May; 171(5):2337-46. PubMed ID: 2651398
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of a conditionally essential heat shock protein in Escherichia coli.
    Peruski LF; Neidhardt FC
    Biochim Biophys Acta; 1994 Aug; 1207(2):165-72. PubMed ID: 8075150
    [TBL] [Abstract][Full Text] [Related]  

  • 60. New fusion protein systems designed to give soluble expression in Escherichia coli.
    Davis GD; Elisee C; Newham DM; Harrison RG
    Biotechnol Bioeng; 1999 Nov; 65(4):382-8. PubMed ID: 10506413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.