These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 11101213)

  • 1. Lipari-Szabo mapping: A graphical approach to Lipari-Szabo analysis of NMR relaxation data using reduced spectral density mapping.
    Andrec M; Montelione GT; Levy RM
    J Biomol NMR; 2000 Oct; 18(2):83-100. PubMed ID: 11101213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Propagation of experimental uncertainties using the Lipari-Szabo model-free analysis of protein dynamics.
    Jin D; Andrec M; Montelione GT; Levy RM
    J Biomol NMR; 1998 Nov; 12(4):471-92. PubMed ID: 9862126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deuterium spin probes of side-chain dynamics in proteins. 2. Spectral density mapping and identification of nanosecond time-scale side-chain motions.
    Skrynnikov NR; Millet O; Kay LE
    J Am Chem Soc; 2002 Jun; 124(22):6449-60. PubMed ID: 12033876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical solution to the Lipari-Szabo model based on the reduced spectral density approximation offers a novel protocol for extracting motional parameters.
    Renner C; Moroder L; Holak TA
    J Magn Reson; 2001 Jul; 151(1):32-9. PubMed ID: 11444934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of dynamic parameters from NMR relaxation data using the Lipari-Szabo model-free approach and Bayesian statistical methods.
    Andrec M; Montelione GT; Levy RM
    J Magn Reson; 1999 Aug; 139(2):408-21. PubMed ID: 10423379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced spectral density mapping through combined multiple-field deuterium
    Hsu A; O'Brien PA; Bhattacharya S; Rance M; Palmer AG
    Methods; 2018 Apr; 138-139():76-84. PubMed ID: 29288801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping of the spectral densities of N-H bond motions in eglin c using heteronuclear relaxation experiments.
    Peng JW; Wagner G
    Biochemistry; 1992 Sep; 31(36):8571-86. PubMed ID: 1390643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Narrowing the gap between experimental and computational determination of methyl group dynamics in proteins.
    Hoffmann F; Xue M; Schäfer LV; Mulder FAA
    Phys Chem Chem Phys; 2018 Oct; 20(38):24577-24590. PubMed ID: 30226234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local structural plasticity of the prion protein. Analysis of NMR relaxation dynamics.
    Viles JH; Donne D; Kroon G; Prusiner SB; Cohen FE; Dyson HJ; Wright PE
    Biochemistry; 2001 Mar; 40(9):2743-53. PubMed ID: 11258885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of the DNA binding domain of the fructose repressor from the analysis of linear correlations between the 15N-1H bond spectral densities obtained by nuclear magnetic resonance spectroscopy.
    van Heijenoort C; Penin F; Guittet E
    Biochemistry; 1998 Apr; 37(15):5060-73. PubMed ID: 9548737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying Lipari-Szabo modelfree parameters from 13CO NMR relaxation experiments.
    Wang T; Weaver DS; Cai S; Zuiderweg ER
    J Biomol NMR; 2006 Oct; 36(2):79-102. PubMed ID: 17013680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing nascent structures in peptides using natural abundance 13C NMR relaxation and reduced spectral density mapping.
    Slupsky CM; Spyracopoulos L; Booth VK; Sykes BD; Crump MP
    Proteins; 2007 Apr; 67(1):18-30. PubMed ID: 17256768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model selection for the interpretation of protein side chain methyl dynamics.
    Choy WY; Kay LE
    J Biomol NMR; 2003 Apr; 25(4):325-33. PubMed ID: 12766394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 15N NMR relaxation as a probe for helical intrinsic propensity: the case of the unfolded D2 domain of annexin I.
    Ochsenbein F; Guerois R; Neumann JM; Sanson A; Guittet E; van Heijenoort C
    J Biomol NMR; 2001 Jan; 19(1):3-18. PubMed ID: 11246852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Backbone dynamics of a bacterially expressed peptide from the receptor binding domain of Pseudomonas aeruginosa pilin strain PAK from heteronuclear 1H-15N NMR spectroscopy.
    Campbell AP; Spyracopoulos L; Irvin RT; Sykes BD
    J Biomol NMR; 2000 Jul; 17(3):239-55. PubMed ID: 10959631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping of the spectral density function of a C alpha-H alpha bond vector from NMR relaxation rates of a 13C-labelled alpha-carbon in motilin.
    Allard P; Jarvet J; Ehrenberg A; Gräslund A
    J Biomol NMR; 1995 Feb; 5(2):133-46. PubMed ID: 7703699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamical characterization of residual and non-native structures in a partially folded protein by (15)N NMR relaxation using a model based on a distribution of correlation times.
    Ochsenbein F; Neumann JM; Guittet E; van Heijenoort C
    Protein Sci; 2002 Apr; 11(4):957-64. PubMed ID: 11910038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new spin probe of protein dynamics: nitrogen relaxation in 15N-2H amide groups.
    Xu J; Millet O; Kay LE; Skrynnikov NR
    J Am Chem Soc; 2005 Mar; 127(9):3220-9. PubMed ID: 15740163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Lipari-Szabo Model-Free Analysis as a Method for Study of Molecular Motion in Solid State Heteronuclear Systems Using NMR Off-Resonance.
    Woźniak-Braszak A; Jurga K; Baranowski M
    Appl Magn Reson; 2016; 47():567-574. PubMed ID: 27340336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 13C NMR and fluorescence analysis of tryptophan dynamics in wild-type and two single-Trp variants of Escherichia coli thioredoxin.
    Kemple MD; Yuan P; Nollet KE; Fuchs JA; Silva N; Prendergast FG
    Biophys J; 1994 Jun; 66(6):2111-26. PubMed ID: 8075345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.