These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 11101228)

  • 1. A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles.
    Demers LM; Mirkin CA; Mucic RC; Reynolds RA; Letsinger RL; Elghanian R; Viswanadham G
    Anal Chem; 2000 Nov; 72(22):5535-41. PubMed ID: 11101228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A real-time PCR-based method for determining the surface coverage of thiol-capped oligonucleotides bound onto gold nanoparticles.
    Kim EY; Stanton J; Vega RA; Kunstman KJ; Mirkin CA; Wolinsky SM
    Nucleic Acids Res; 2006 Apr; 34(7):e54. PubMed ID: 16617142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybridization and enzymatic extension of au nanoparticle-bound oligonucleotides.
    Nicewarner Peña SR; Raina S; Goodrich GP; Fedoroff NV; Keating CD
    J Am Chem Soc; 2002 Jun; 124(25):7314-23. PubMed ID: 12071740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybridization of oligonucleotide-modified silver and gold nanoparticles in aqueous dispersions and on gold films.
    Tokareva I; Hutter E
    J Am Chem Soc; 2004 Dec; 126(48):15784-9. PubMed ID: 15571402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of spacer and strand length on oligonucleotide conjugation to the surface of ligand-free laser-generated gold nanoparticles.
    Barchanski A; Hashimoto N; Petersen S; Sajti CL; Barcikowski S
    Bioconjug Chem; 2012 May; 23(5):908-15. PubMed ID: 22475043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical detection of oligonucleotide using an aggregate of gold nanoparticles as a conductive tag.
    Fang C; Fan Y; Kong J; Gao Z; Balasubramanian N
    Anal Chem; 2008 Dec; 80(24):9387-94. PubMed ID: 19072259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oligonucleotide-capped gold nanoparticles for improved atomic force microscopic imaging and enhanced selectivity in polynucleotide detection.
    Han S; Lin J; Zhou F; Vellanoweth RL
    Biochem Biophys Res Commun; 2000 Dec; 279(1):265-9. PubMed ID: 11112450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical performance of molecular beacons on surface immobilized gold nanoparticles of varying size and density.
    Uddayasankar U; Krull UJ
    Anal Chim Acta; 2013 Nov; 803():113-22. PubMed ID: 24216204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The Increase of Oligonucleotides--Gold Nanoparticles Conjugates Stability].
    Garafutdinov RR; Sakhabutdinova AR; Chemeris AV
    Bioorg Khim; 2015; 41(3):327-35. PubMed ID: 26502609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybridization efficiency of molecular beacons bound to gold nanowires: effect of surface coverage and target length.
    Cederquist KB; Keating CD
    Langmuir; 2010 Dec; 26(23):18273-80. PubMed ID: 21038880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced electrochemical detection of DNA hybridization with carbon nanotube modified paste electrode.
    Nie L; Guo H; He Q; Chen J; Miao Y
    J Nanosci Nanotechnol; 2007 Feb; 7(2):560-4. PubMed ID: 17450795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role radius of curvature plays in thiolated oligonucleotide loading on gold nanoparticles.
    Hill HD; Millstone JE; Banholzer MJ; Mirkin CA
    ACS Nano; 2009 Feb; 3(2):418-24. PubMed ID: 19236080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-resolved optical sensing of oligonucleotide hybridization via Au colloidal nanoparticles.
    Liu GL; Rodriguez VB; Lee LP
    J Nanosci Nanotechnol; 2005 Nov; 5(11):1933-7. PubMed ID: 16433435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling the number and positions of oligonucleotides on gold nanoparticle surfaces.
    Suzuki K; Hosokawa K; Maeda M
    J Am Chem Soc; 2009 Jun; 131(22):7518-9. PubMed ID: 19445511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing Au-nanoprobes for specific sequence discrimination.
    Doria G; Baumgartner BG; Franco R; Baptista PV
    Colloids Surf B Biointerfaces; 2010 May; 77(1):122-4. PubMed ID: 20133112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stable dye-labelled oligonucleotide-nanoparticle conjugates for nucleic acid detection.
    Barrett L; Dougan JA; Faulds K; Graham D
    Nanoscale; 2011 Aug; 3(8):3221-7. PubMed ID: 21647500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA-length-dependent quenching of fluorescently labeled iron oxide nanoparticles with gold, graphene oxide and MoS2 nanostructures.
    Balcioglu M; Rana M; Robertson N; Yigit MV
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12100-10. PubMed ID: 25014711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced oligonucleotide-nanoparticle conjugate stability using thioctic acid modified oligonucleotides.
    Dougan JA; Karlsson C; Smith WE; Graham D
    Nucleic Acids Res; 2007; 35(11):3668-75. PubMed ID: 17488844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophoretic properties of DNA-modified colloidal gold nanoparticles.
    Sandström P; Akerman B
    Langmuir; 2004 May; 20(10):4182-6. PubMed ID: 15969415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcription inhibition using oligonucleotide-modified gold nanoparticles.
    Agbasi-Porter C; Ryman-Rasmussen J; Franzen S; Feldheim D
    Bioconjug Chem; 2006; 17(5):1178-83. PubMed ID: 16984126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.