These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 11101249)

  • 1. A study of the enthalpy and entropy contributions of the stationary phase in reversed-phase liquid chromatography.
    Ranatunga RP; Carr PW
    Anal Chem; 2000 Nov; 72(22):5679-92. PubMed ID: 11101249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature dependence of retention in reversed-phase liquid chromatography. 1. Stationary-phase considerations.
    Cole LA; Dorsey JG
    Anal Chem; 1992 Jul; 64(13):1317-23. PubMed ID: 1503212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation studies on the effects of mobile-phase modification on partitioning in liquid chromatography.
    Wick CD; Siepmann JI; Schure MR
    Anal Chem; 2004 May; 76(10):2886-92. PubMed ID: 15144201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined effects of mobile phase composition and temperature on the retention of homologous and polar test compounds on polydentate C8 column.
    Jandera P; Krupczyńska K; Vynuchalová K; Buszewski B
    J Chromatogr A; 2010 Sep; 1217(39):6052-60. PubMed ID: 20728897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retention mechanism of poly(ethylene oxide) in reversed-phase and normal-phase liquid chromatography.
    Cho D; Park S; Hong J; Chang T
    J Chromatogr A; 2003 Feb; 986(2):191-8. PubMed ID: 12597626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of ternary mobile phases for reversed-phase liquid chromatography: effect of composition on retention mechanism.
    Coym JW
    J Chromatogr A; 2010 Sep; 1217(38):5957-64. PubMed ID: 20723902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retention mechanisms in subcritical water reversed-phase chromatography.
    Allmon SD; Dorsey JG
    J Chromatogr A; 2009 Jun; 1216(26):5106-11. PubMed ID: 19447396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the retention mechanism on an octadecylsiloxane-bonded silica stationary phase (HyPURITY C18) in reversed-phase liquid chromatography.
    Poole CF; Kiridena W; DeKay C; Koziol WW; Rosencrans RD
    J Chromatogr A; 2006 May; 1115(1-2):133-41. PubMed ID: 16564531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C60 and C70 HPLC retention reversal study using organic modifiers.
    Guillaume YC; Peyrin E; Grosset C
    Anal Chem; 2000 Mar; 72(6):1301-6. PubMed ID: 10740874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation of reversed-phase stationary phases for the liquid chromatographic analysis of basic pharmaceuticals by thermodynamic data.
    Vervoort RJ; Ruyter E; Debets AJ; Claessens HA; Cramers CA; de Jong GJ
    J Chromatogr A; 2002 Jul; 964(1-2):67-76. PubMed ID: 12198857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mobile phase effects in reversed-phase liquid chromatography: a comparison of acetonitrile/water and methanol/water solvents as studied by molecular simulation.
    Rafferty JL; Siepmann JI; Schure MR
    J Chromatogr A; 2011 Apr; 1218(16):2203-13. PubMed ID: 21388628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retention in reversed-phase liquid chromatography: solvatochromic investigation of homologous alcohol-water binary mobile phases.
    Michels JJ; Dorsey JG
    J Chromatogr; 1988 Dec; 457():85-98. PubMed ID: 3243892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retention mechanism in reversed-phase liquid chromatography: a molecular perspective.
    Rafferty JL; Zhang L; Siepmann JI; Schure MR
    Anal Chem; 2007 Sep; 79(17):6551-8. PubMed ID: 17668929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retention mechanism of weak polar solutes in reversed phase liquid chromatography.
    Guillaume YC; Guinchard C
    Anal Chem; 1996 Sep; 68(17):2869-73. PubMed ID: 21619355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of three temperature- and mobile phase-dependent retention models for reversed-phase liquid chromatographic retention and apparent retention enthalpy.
    Horner AR; Wilson RE; Groskreutz SR; Murray BE; Weber SG
    J Chromatogr A; 2019 Mar; 1589():73-82. PubMed ID: 30626503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Evaluation of the retention properties of two cyclodextrin stationary phases with different spacers].
    Zhao Y; Guo Z; Xue X; Liang X
    Se Pu; 2011 Sep; 29(9):885-9. PubMed ID: 22233077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laterally attached liquid crystalline polymers as stationary phases in reversed-phase high-performance liquid chromatography. V. Study of retention mechanism using linear solvation energy relationships.
    Gritti F; Félix G; Achard MF; Hardouin F
    J Chromatogr A; 2001 Jul; 922(1-2):51-61. PubMed ID: 11486891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mobile phase effects on retention on a new butylimidazolium-based high-performance liquid chromatographic stationary phase.
    Sun Y; Stalcup AM
    J Chromatogr A; 2006 Sep; 1126(1-2):276-82. PubMed ID: 16854426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of hydrocarbon, fluorocarbon, and aromatic bonded RP-HPLC stationary phases by linear solvation energy relationships.
    Reta M; Carr PW; Sadek PC; Rutan SC
    Anal Chem; 1999 Aug; 71(16):3484-96. PubMed ID: 10464478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retention and mass transfer characteristics in reversed-phase liquid chromatography using a tetrahydrofuran-water solution as the mobile phase.
    Miyabe K; Sotoura S; Guiochon G
    J Chromatogr A; 2001 Jun; 919(2):231-44. PubMed ID: 11442028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.