BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 11101292)

  • 1. Role for lysine 142 in the excision of adenine from A:G mispairs by MutY DNA glycosylase of Escherichia coli.
    Zharkov DO; Gilboa R; Yagil I; Kycia JH; Gerchman SE; Shoham G; Grollman AP
    Biochemistry; 2000 Dec; 39(48):14768-78. PubMed ID: 11101292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MutY DNA glycosylase: base release and intermediate complex formation.
    Zharkov DO; Grollman AP
    Biochemistry; 1998 Sep; 37(36):12384-94. PubMed ID: 9730810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-turnover and pre-steady-state kinetics of the reaction of the adenine glycosylase MutY with mismatch-containing DNA substrates.
    Porello SL; Leyes AE; David SS
    Biochemistry; 1998 Oct; 37(42):14756-64. PubMed ID: 9778350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of a Schiff base intermediate is not required for the adenine glycosylase activity of Escherichia coli MutY.
    Williams SD; David SS
    Biochemistry; 1999 Nov; 38(47):15417-24. PubMed ID: 10569924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MutY catalytic core, mutant and bound adenine structures define specificity for DNA repair enzyme superfamily.
    Guan Y; Manuel RC; Arvai AS; Parikh SS; Mol CD; Miller JH; Lloyd S; Tainer JA
    Nat Struct Biol; 1998 Dec; 5(12):1058-64. PubMed ID: 9846876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The C-terminal domain of the adenine-DNA glycosylase MutY confers specificity for 8-oxoguanine.adenine mispairs and may have evolved from MutT, an 8-oxo-dGTPase.
    Noll DM; Gogos A; Granek JA; Clarke ND
    Biochemistry; 1999 May; 38(20):6374-9. PubMed ID: 10350454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that MutY is a monofunctional glycosylase capable of forming a covalent Schiff base intermediate with substrate DNA.
    Williams SD; David SS
    Nucleic Acids Res; 1998 Nov; 26(22):5123-33. PubMed ID: 9801309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The active site of the Escherichia coli MutY DNA adenine glycosylase.
    Wright PM; Yu J; Cillo J; Lu AL
    J Biol Chem; 1999 Oct; 274(41):29011-8. PubMed ID: 10506150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repair of DNA containing Fapy.dG and its beta-C-nucleoside analogue by formamidopyrimidine DNA glycosylase and MutY.
    Wiederholt CJ; Delaney MO; Pope MA; David SS; Greenberg MM
    Biochemistry; 2003 Aug; 42(32):9755-60. PubMed ID: 12911318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient recognition of substrates and substrate analogs by the adenine glycosylase MutY requires the C-terminal domain.
    Chmiel NH; Golinelli MP; Francis AW; David SS
    Nucleic Acids Res; 2001 Jan; 29(2):553-64. PubMed ID: 11139626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A single engineered point mutation in the adenine glycosylase MutY confers bifunctional glycosylase/AP lyase activity.
    Williams SD; David SS
    Biochemistry; 2000 Aug; 39(33):10098-109. PubMed ID: 10955998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Escherichia coli apurinic-apyrimidinic endonucleases enhance the turnover of the adenine glycosylase MutY with G:A substrates.
    Pope MA; Porello SL; David SS
    J Biol Chem; 2002 Jun; 277(25):22605-15. PubMed ID: 11960995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight into the roles of tyrosine 82 and glycine 253 in the Escherichia coli adenine glycosylase MutY.
    Livingston AL; Kundu S; Henderson Pozzi M; Anderson DW; David SS
    Biochemistry; 2005 Nov; 44(43):14179-90. PubMed ID: 16245934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential double-flipping mechanism by E. coli MutY.
    House PG; Volk DE; Thiviyanathan V; Manuel RC; Luxon BA; Gorenstein DG; Lloyd RS
    Prog Nucleic Acid Res Mol Biol; 2001; 68():349-64. PubMed ID: 11554310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenine excisional repair function of MYH protein on the adenine:8-hydroxyguanine base pair in double-stranded DNA.
    Shinmura K; Yamaguchi S; Saitoh T; Takeuchi-Sasaki M; Kim SR; Nohmi T; Yokota J
    Nucleic Acids Res; 2000 Dec; 28(24):4912-8. PubMed ID: 11121482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of an Escherichia coli mutant MutY with a cysteine to alanine mutation at the iron-sulfur cluster domain.
    Lu AL; Wright PM
    Biochemistry; 2003 Apr; 42(13):3742-50. PubMed ID: 12667065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate recognition by Escherichia coli MutY using substrate analogs.
    Chepanoske CL; Porello SL; Fujiwara T; Sugiyama H; David SS
    Nucleic Acids Res; 1999 Aug; 27(15):3197-204. PubMed ID: 10454618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of lysine-57 in the catalytic activities of Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg protein).
    Sidorkina OM; Laval J
    Nucleic Acids Res; 1998 Dec; 26(23):5351-7. PubMed ID: 9826758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate specificity of Escherichia coli MutY protein.
    Bulychev NV; Varaprasad CV; Dormán G; Miller JH; Eisenberg M; Grollman AP; Johnson F
    Biochemistry; 1996 Oct; 35(40):13147-56. PubMed ID: 8855952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Escherichia coli MutY protein has a guanine-DNA glycosylase that acts on 7,8-dihydro-8-oxoguanine:guanine mispair to prevent spontaneous G:C-->C:G transversions.
    Zhang QM; Ishikawa N; Nakahara T; Yonei S
    Nucleic Acids Res; 1998 Oct; 26(20):4669-75. PubMed ID: 9753736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.