These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 11101333)

  • 1. Pressure and flux profiles in bead-filled ultrafiltration/microfiltration hollow fiber membrane modules.
    Dai XP; Luo RG; Sirkar KK
    Biotechnol Prog; 2000; 16(6):1044-54. PubMed ID: 11101333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new integrated membrane filtration and chromatographic device.
    Xu Y; Sirkar KK; Dai XP; Luo RG
    Biotechnol Prog; 2005; 21(2):590-7. PubMed ID: 15801803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein loading, elution, and resolution behavior in a novel device that integrates ultrafiltration and chromatographic separation.
    Dai XP; Majumdar S; Luo RG; Sirkar KK
    Biotechnol Bioeng; 2003 Jul; 83(2):125-39. PubMed ID: 12768618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioartificial kidney. I. Theoretical analysis of convective flow in hollow fiber modules: application to a bioartificial hemofilter.
    Moussy Y
    Biotechnol Bioeng; 2000 Apr; 68(2):142-52. PubMed ID: 10712730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KNT-artificial neural network model for flux prediction of ultrafiltration membrane producing drinking water.
    Oh HK; Yu MJ; Gwon EM; Koo JY; Kim SG; Koizumi A
    Water Sci Technol; 2004; 50(8):103-10. PubMed ID: 15566193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of filtration characteristics in submerged microfiltration for drinking water treatment.
    Lee S; Park PK; Kim JH; Yeon KM; Lee CH
    Water Res; 2008 Jun; 42(12):3109-21. PubMed ID: 18387649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new coiled hollow-fiber module design for enhanced microfiltration performance in biotechnology.
    Luque S; Mallubhotla H; Gehlert G; Kuriyel R; Dzengeleski S; Pearl S; Belfort G
    Biotechnol Bioeng; 1999 Nov; 65(3):247-57. PubMed ID: 10486122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A predictive aggregate transport model for microfiltration of combined macromolecular solutions and poly-disperse suspensions: testing model with transgenic goat milk.
    Baruah GL; Couto D; Belfort G
    Biotechnol Prog; 2003; 19(5):1533-40. PubMed ID: 14524716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scintigraphic Study of Local Flux and Osmotic Pressure Distributions in Ultrafiltration of Blood and Plasma.
    Defossez M; Ding L; Jaffrin M; Fauchet M
    J Colloid Interface Sci; 1996 Jan; 177(1):179-191. PubMed ID: 10479430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using an improved 1D boundary layer model with CFD for flux prediction in gas-sparged tubular membrane ultrafiltration.
    Smith R; Taha T; Cui ZF
    Water Sci Technol; 2005; 51(6-7):69-76. PubMed ID: 16003963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of permeate flux during osmotic pressure-controlled electric field-enhanced cross-flow ultrafiltration.
    Sarkar B; DasGupta S; De S
    J Colloid Interface Sci; 2008 Mar; 319(1):236-46. PubMed ID: 18068719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of ultra- and microfiltration in the presence and absence of secondary flow with polysaccharides, proteins, and yeast suspensions.
    Gehlert G; Luque S; Belfort G
    Biotechnol Prog; 1998; 14(6):931-42. PubMed ID: 9841658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of cobalt ions from aqueous solutions by polymer assisted ultrafiltration using experimental design approach: part 2: Optimization of hydrodynamic conditions for a crossflow ultrafiltration module with rotating part.
    Cojocaru C; Zakrzewska-Trznadel G; Miskiewicz A
    J Hazard Mater; 2009 Sep; 169(1-3):610-20. PubMed ID: 19414217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of membrane configuration on bench-scale MF and UF fouling experiments.
    Howe KJ; Marwah A; Chiu KP; Adham SS
    Water Res; 2007 Sep; 41(17):3842-9. PubMed ID: 17582459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global model for optimizing crossflow microfiltration and ultrafiltration processes: a new predictive and design tool.
    Baruah GL; Venkiteshwaran A; Belfort G
    Biotechnol Prog; 2005; 21(4):1013-25. PubMed ID: 16080678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water hammer reduces fouling during natural water ultrafiltration.
    Broens F; Menne D; Pothof I; Blankert B; Roesink HD; Futselaar H; Lammertink RG; Wessling M
    Water Res; 2012 Mar; 46(4):1113-20. PubMed ID: 22227242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dean vortex membrane microfiltration and diafiltration of rBDNF E. coli inclusion bodies.
    Schutyser M; Rupp R; Wideman J; Belfort G
    Biotechnol Prog; 2002; 18(2):322-9. PubMed ID: 11934303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous ultrafiltration and affinity sorptive separation of proteins in a hollow fiber membrane module.
    Molinari R; Torres JL; Michaels AS; Kilpatrick PK; Carbonell RG
    Biotechnol Bioeng; 1990 Sep; 36(6):572-80. PubMed ID: 18595115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A predictive aggregate transport model for microfiltration of combined macromolecular solutions and poly-disperse suspensions: model development.
    Baruah GL; Belfort G
    Biotechnol Prog; 2003; 19(5):1524-32. PubMed ID: 14524715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative investigation on the impact of polymeric substances on membrane fouling during sub-critical and critical flux operation of a municipal membrane bioreactor.
    Lyko S; Wintgens T; Melin T
    Water Sci Technol; 2008; 58(9):1849-55. PubMed ID: 19029728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.