These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 11101501)
1. Crystal structure of trbp111: a structure-specific tRNA-binding protein. Swairjo MA; Morales AJ; Wang CC; Ortiz AR; Schimmel P EMBO J; 2000 Dec; 19(23):6287-98. PubMed ID: 11101501 [TBL] [Abstract][Full Text] [Related]
2. Structure-specific tRNA-binding protein from the extreme thermophile Aquifex aeolicus. Morales AJ; Swairjo MA; Schimmel P EMBO J; 1999 Jun; 18(12):3475-83. PubMed ID: 10369686 [TBL] [Abstract][Full Text] [Related]
3. Structure of the EMAPII domain of human aminoacyl-tRNA synthetase complex reveals evolutionary dimer mimicry. Renault L; Kerjan P; Pasqualato S; Ménétrey J; Robinson JC; Kawaguchi S; Vassylyev DG; Yokoyama S; Mirande M; Cherfils J EMBO J; 2001 Feb; 20(3):570-8. PubMed ID: 11157763 [TBL] [Abstract][Full Text] [Related]
4. Structural basis of tRNA recognition by the widespread OB fold. Umuhire Juru A; Ghirlando R; Zhang J Nat Commun; 2024 Jul; 15(1):6385. PubMed ID: 39075051 [TBL] [Abstract][Full Text] [Related]
5. Binding Properties of Split tRNA to the C-terminal Domain of Methionyl-tRNA Synthetase of Nanoarchaeum equitans. Suzuki H; Kaneko A; Yamamoto T; Nambo M; Hirasawa I; Umehara T; Yoshida H; Park SY; Tamura K J Mol Evol; 2017 Jun; 84(5-6):267-278. PubMed ID: 28589220 [TBL] [Abstract][Full Text] [Related]
6. Crystal structures of the conserved tRNA-modifying enzyme GidA: implications for its interaction with MnmE and substrate. Meyer S; Scrima A; Versées W; Wittinghofer A J Mol Biol; 2008 Jul; 380(3):532-47. PubMed ID: 18565343 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous binding of two proteins to opposite sides of a single transfer RNA. Nomanbhoy T; Morales AJ; Abraham AT; Vörtler CS; Giegé R; Schimmel P Nat Struct Biol; 2001 Apr; 8(4):344-8. PubMed ID: 11276256 [TBL] [Abstract][Full Text] [Related]
8. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases. Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750 [TBL] [Abstract][Full Text] [Related]
9. Trbp111 selectively binds a noncovalently assembled tRNA-like structure. Kushiro T; Schimmel P Proc Natl Acad Sci U S A; 2002 Dec; 99(26):16631-5. PubMed ID: 12481025 [TBL] [Abstract][Full Text] [Related]
10. The crystal structures of T. thermophilus lysyl-tRNA synthetase complexed with E. coli tRNA(Lys) and a T. thermophilus tRNA(Lys) transcript: anticodon recognition and conformational changes upon binding of a lysyl-adenylate analogue. Cusack S; Yaremchuk A; Tukalo M EMBO J; 1996 Nov; 15(22):6321-34. PubMed ID: 8947055 [TBL] [Abstract][Full Text] [Related]
11. The NMR structure of Escherichia coli ribosomal protein L25 shows homology to general stress proteins and glutaminyl-tRNA synthetases. Stoldt M; Wöhnert J; Görlach M; Brown LR EMBO J; 1998 Nov; 17(21):6377-84. PubMed ID: 9799245 [TBL] [Abstract][Full Text] [Related]
12. Structural basis for tRNA-dependent amidotransferase function. Schmitt E; Panvert M; Blanquet S; Mechulam Y Structure; 2005 Oct; 13(10):1421-33. PubMed ID: 16216574 [TBL] [Abstract][Full Text] [Related]
13. A family of RNA-binding enzymes. the aminoacyl-tRNA synthetases. Mechulam Y; Meinnel T; Blanquet S Subcell Biochem; 1995; 24():323-76. PubMed ID: 7900181 [No Abstract] [Full Text] [Related]
14. Structural modeling identified the tRNA-binding domain of Utp8p, an essential nucleolar component of the nuclear tRNA export machinery of Saccharomyces cerevisiae. McGuire AT; Keates RA; Cook S; Mangroo D Biochem Cell Biol; 2009 Apr; 87(2):431-43. PubMed ID: 19370060 [TBL] [Abstract][Full Text] [Related]
15. Aminoacylation of RNA minihelices: implications for tRNA synthetase structural design and evolution. Buechter DD; Schimmel P Crit Rev Biochem Mol Biol; 1993; 28(4):309-22. PubMed ID: 7691478 [TBL] [Abstract][Full Text] [Related]
16. Kinetic quality control of anticodon recognition by a eukaryotic aminoacyl-tRNA synthetase. Liu C; Gamper H; Shtivelband S; Hauenstein S; Perona JJ; Hou YM J Mol Biol; 2007 Apr; 367(4):1063-78. PubMed ID: 17303165 [TBL] [Abstract][Full Text] [Related]
17. The structural basis for tRNA recognition and pseudouridine formation by pseudouridine synthase I. Foster PG; Huang L; Santi DV; Stroud RM Nat Struct Biol; 2000 Jan; 7(1):23-7. PubMed ID: 10625422 [TBL] [Abstract][Full Text] [Related]
18. Structure and function of the C-terminal domain of methionyl-tRNA synthetase. Crepin T; Schmitt E; Blanquet S; Mechulam Y Biochemistry; 2002 Oct; 41(43):13003-11. PubMed ID: 12390027 [TBL] [Abstract][Full Text] [Related]
19. Alanyl-tRNA synthetase crystal structure and design for acceptor-stem recognition. Swairjo MA; Otero FJ; Yang XL; Lovato MA; Skene RJ; McRee DE; Ribas de Pouplana L; Schimmel P Mol Cell; 2004 Mar; 13(6):829-41. PubMed ID: 15053876 [TBL] [Abstract][Full Text] [Related]
20. Structural analysis of multifunctional peptide motifs in human bifunctional tRNA synthetase: identification of RNA-binding residues and functional implications for tandem repeats. Jeong EJ; Hwang GS; Kim KH; Kim MJ; Kim S; Kim KS Biochemistry; 2000 Dec; 39(51):15775-82. PubMed ID: 11123902 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]