BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 11101534)

  • 1. Separate domains in GCN1 for binding protein kinase GCN2 and ribosomes are required for GCN2 activation in amino acid-starved cells.
    Sattlegger E; Hinnebusch AG
    EMBO J; 2000 Dec; 19(23):6622-33. PubMed ID: 11101534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association of GCN1-GCN20 regulatory complex with the N-terminus of eIF2alpha kinase GCN2 is required for GCN2 activation.
    Garcia-Barrio M; Dong J; Ufano S; Hinnebusch AG
    EMBO J; 2000 Apr; 19(8):1887-99. PubMed ID: 10775272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence that GCN1 and GCN20, translational regulators of GCN4, function on elongating ribosomes in activation of eIF2alpha kinase GCN2.
    Marton MJ; Vazquez de Aldana CR; Qiu H; Chakraburtty K; Hinnebusch AG
    Mol Cell Biol; 1997 Aug; 17(8):4474-89. PubMed ID: 9234705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. YIH1 is an actin-binding protein that inhibits protein kinase GCN2 and impairs general amino acid control when overexpressed.
    Sattlegger E; Swanson MJ; Ashcraft EA; Jennings JL; Fekete RA; Link AJ; Hinnebusch AG
    J Biol Chem; 2004 Jul; 279(29):29952-62. PubMed ID: 15126500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyribosome binding by GCN1 is required for full activation of eukaryotic translation initiation factor 2{alpha} kinase GCN2 during amino acid starvation.
    Sattlegger E; Hinnebusch AG
    J Biol Chem; 2005 Apr; 280(16):16514-21. PubMed ID: 15722345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that Yih1 resides in a complex with ribosomes.
    Waller T; Lee SJ; Sattlegger E
    FEBS J; 2012 May; 279(10):1761-76. PubMed ID: 22404850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GCN1, a translational activator of GCN4 in Saccharomyces cerevisiae, is required for phosphorylation of eukaryotic translation initiation factor 2 by protein kinase GCN2.
    Marton MJ; Crouch D; Hinnebusch AG
    Mol Cell Biol; 1993 Jun; 13(6):3541-56. PubMed ID: 8497269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of eukaryotic translation elongation factor 3 impairs Gcn2 protein activation.
    Visweswaraiah J; Lee SJ; Hinnebusch AG; Sattlegger E
    J Biol Chem; 2012 Nov; 287(45):37757-68. PubMed ID: 22888004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Budding yeast GCN1 binds the GI domain to activate the eIF2alpha kinase GCN2.
    Kubota H; Ota K; Sakaki Y; Ito T
    J Biol Chem; 2001 May; 276(20):17591-6. PubMed ID: 11350982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations activating the yeast eIF-2 alpha kinase GCN2: isolation of alleles altering the domain related to histidyl-tRNA synthetases.
    Ramirez M; Wek RC; Vazquez de Aldana CR; Jackson BM; Freeman B; Hinnebusch AG
    Mol Cell Biol; 1992 Dec; 12(12):5801-15. PubMed ID: 1448107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations that bypass tRNA binding activate the intrinsically defective kinase domain in GCN2.
    Qiu H; Hu C; Dong J; Hinnebusch AG
    Genes Dev; 2002 May; 16(10):1271-80. PubMed ID: 12023305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GCN20, a novel ATP binding cassette protein, and GCN1 reside in a complex that mediates activation of the eIF-2 alpha kinase GCN2 in amino acid-starved cells.
    Vazquez de Aldana CR; Marton MJ; Hinnebusch AG
    EMBO J; 1995 Jul; 14(13):3184-99. PubMed ID: 7621831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GI domain-mediated association of the eukaryotic initiation factor 2alpha kinase GCN2 with its activator GCN1 is required for general amino acid control in budding yeast.
    Kubota H; Sakaki Y; Ito T
    J Biol Chem; 2000 Jul; 275(27):20243-6. PubMed ID: 10801780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gcn1 contacts the small ribosomal protein Rps10, which is required for full activation of the protein kinase Gcn2.
    Lee SJ; Swanson MJ; Sattlegger E
    Biochem J; 2015 Mar; 466(3):547-59. PubMed ID: 25437641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dimerization by translation initiation factor 2 kinase GCN2 is mediated by interactions in the C-terminal ribosome-binding region and the protein kinase domain.
    Qiu H; Garcia-Barrio MT; Hinnebusch AG
    Mol Cell Biol; 1998 May; 18(5):2697-711. PubMed ID: 9566889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The flexible N-terminal domain of ribosomal protein L11 from Escherichia coli is necessary for the activation of stringent factor.
    Jenvert RM; Schiavone LH
    J Mol Biol; 2007 Jan; 365(3):764-72. PubMed ID: 17095013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of Gcn1 bound to stalled and colliding 80S ribosomes.
    Pochopien AA; Beckert B; Kasvandik S; Berninghausen O; Beckmann R; Tenson T; Wilson DN
    Proc Natl Acad Sci U S A; 2021 Apr; 118(14):. PubMed ID: 33790014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A genetic approach to identify amino acids in Gcn1 required for Gcn2 activation.
    Gottfried S; Koloamatangi SMBMJ; Daube C; Schiemann AH; Sattlegger E
    PLoS One; 2022; 17(11):e0277648. PubMed ID: 36441697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short, hydrophobic, alanine-based proteins based on the basic region/leucine zipper protein motif: overcoming inclusion body formation and protein aggregation during overexpression, purification, and renaturation.
    Lajmi AR; Wallace TR; Shin JA
    Protein Expr Purif; 2000 Apr; 18(3):394-403. PubMed ID: 10733895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence that eukaryotic translation elongation factor 1A (eEF1A) binds the Gcn2 protein C terminus and inhibits Gcn2 activity.
    Visweswaraiah J; Lageix S; Castilho BA; Izotova L; Kinzy TG; Hinnebusch AG; Sattlegger E
    J Biol Chem; 2011 Oct; 286(42):36568-79. PubMed ID: 21849502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.