These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 11101682)

  • 1. Continuous monitoring of the cytoplasmic pH in Methanobacterium thermoautotrophicum using the intracellular factor F(420) as indicator.
    von Felten P; Bachofen R
    Microbiology (Reading); 2000 Dec; 146 Pt 12():3245-3250. PubMed ID: 11101682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convenient fluorescence-based methods to measure membrane potential and intracellular pH in the Archaeon Methanobacterium thermoautotrophicum.
    de Poorter LM; Keltjens JT
    J Microbiol Methods; 2001 Nov; 47(2):233-41. PubMed ID: 11576687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na(+)-driven ATP synthesis in Methanobacterium thermoautotrophicum and its differentiation from H(+)-driven ATP synthesis by rhodamine 6G.
    Smigán P; Majerník A; Greksák M
    FEBS Lett; 1994 Aug; 349(3):424-8. PubMed ID: 8050608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na(+)-driven ATP synthesis in Methanobacterium thermoautotrophicum and its differentiation from H(+)-driven ATP synthesis by rhodamine 6G.
    Smigán P; Majerník A; Greksák M
    FEBS Lett; 1994 Jun; 347(2-3):190-4. PubMed ID: 8034000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ability of acidic pH, growth inhibitors, and glucose to increase the proton motive force and energy spilling of amino acid-fermenting Clostridium sporogenes MD1 cultures.
    Flythe MD; Russell JB
    Arch Microbiol; 2005 May; 183(4):236-42. PubMed ID: 15891933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion transport and methane production in Methanobacterium thermoautotrophicum.
    Sauer FD; Blackwell BA; Kramer JK
    Proc Natl Acad Sci U S A; 1994 May; 91(10):4466-70. PubMed ID: 11607473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of Methanobacterium thermoautotrophicum DeltaH mutants unable to grow under hydrogen-deprived conditions.
    Pennings JL; Keltjens JT; Vogels GD
    J Bacteriol; 1998 May; 180(10):2676-81. PubMed ID: 9573152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of the Na+/H+ antiport in the archaeon Methanobacterium thermoautotrophicum strain delta H.
    Majerník A; Smigán P; Greksák M
    Biochem Mol Biol Int; 1997 Sep; 43(1):123-32. PubMed ID: 9315290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for DeltapH surface component (DeltapH(S)) of proton motive force in ATP synthesis of mitochondria.
    Xiong JW; Zhu L; Jiao X; Liu SS
    Biochim Biophys Acta; 2010 Mar; 1800(3):213-22. PubMed ID: 19695309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton in the well and through the desolvation barrier.
    Mulkidjanian AY
    Biochim Biophys Acta; 2006; 1757(5-6):415-27. PubMed ID: 16780789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of riboflavin: an unusual riboflavin synthase of Methanobacterium thermoautotrophicum.
    Eberhardt S; Korn S; Lottspeich F; Bacher A
    J Bacteriol; 1997 May; 179(9):2938-43. PubMed ID: 9139911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The presence of H+ and Na(+)-translocating ATPases in Methanobacterium thermoautotrophicum and their possible function under alkaline conditions.
    Smigán P; Majerník A; Polák P; Hapala I; Greksák M
    FEBS Lett; 1995 Sep; 371(2):119-22. PubMed ID: 7672109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the light-induced electric potential difference (ΔΨ), the pH difference (ΔpH) and the proton motive force across the thylakoid membrane in C
    Lyu H; Lazár D
    J Theor Biol; 2017 Jan; 413():11-23. PubMed ID: 27816676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in the proton-motive force in Escherichia coli in response to external oxidoreduction potential.
    Riondet C; Cachon R; Waché Y; Alcaraz G; Diviès C
    Eur J Biochem; 1999 Jun; 262(2):595-9. PubMed ID: 10336647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial Na+ - or H+ -coupled ATP synthases operating at low electrochemical potential.
    Dimroth P; Cook GM
    Adv Microb Physiol; 2004; 49():175-218. PubMed ID: 15518831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular levels of factor 390 and methanogenic enzymes during growth of Methanobacterium thermoautotrophicum deltaH.
    Vermeij P; Pennings JL; Maassen SM; Keltjens JT; Vogels GD
    J Bacteriol; 1997 Nov; 179(21):6640-8. PubMed ID: 9352911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methanobacterium kanagiense sp. nov., a hydrogenotrophic methanogen, isolated from rice-field soil.
    Kitamura K; Fujita T; Akada S; Tonouchi A
    Int J Syst Evol Microbiol; 2011 Jun; 61(Pt 6):1246-1252. PubMed ID: 20639228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transmembrane electrical potential and intracellular pH in methanogenic bacteria.
    Jarrell KF; Sprott GD
    Can J Microbiol; 1981 Jul; 27(7):720-8. PubMed ID: 7296406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP synthesis in Methanobacterium thermoautotrophicum coupled to CH4 formation from H2 and CO2 in the apparent absence of an electrochemical proton potential across the cytoplasmic membrane.
    Schönheit P; Beimborn DB
    Eur J Biochem; 1985 May; 148(3):545-50. PubMed ID: 2986965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coenzyme F420 dependence of the methylenetetrahydromethanopterin dehydrogenase of Methanobacterium thermoautotrophicum.
    Hartzell PL; Zvilius G; Escalante-Semerena JC; Donnelly MI
    Biochem Biophys Res Commun; 1985 Dec; 133(3):884-90. PubMed ID: 4084309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.