These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 11101930)
1. Unattainability of carnot efficiency in the brownian heat engine. Hondou T; Sekimoto K Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt A):6021-5. PubMed ID: 11101930 [TBL] [Abstract][Full Text] [Related]
2. Inertial effects in Büttiker-Landauer motor and refrigerator at the overdamped limit. Benjamin R; Kawai R Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051132. PubMed ID: 18643051 [TBL] [Abstract][Full Text] [Related]
3. Carnot efficiency is reachable in an irreversible process. Lee JS; Park H Sci Rep; 2017 Sep; 7(1):10725. PubMed ID: 28878219 [TBL] [Abstract][Full Text] [Related]
4. Thermodynamics of the mesoscopic thermoelectric heat engine beyond the linear-response regime. Yamamoto K; Hatano N Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042165. PubMed ID: 26565226 [TBL] [Abstract][Full Text] [Related]
5. Efficiency of Brownian heat engines. Derényi I; Astumian RD Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jun; 59(6):R6219-22. PubMed ID: 11969723 [TBL] [Abstract][Full Text] [Related]
6. Diverging, but negligible power at Carnot efficiency: Theory and experiment. Holubec V; Ryabov A Phys Rev E; 2017 Dec; 96(6-1):062107. PubMed ID: 29347419 [TBL] [Abstract][Full Text] [Related]
7. Single-particle stochastic heat engine. Rana S; Pal PS; Saha A; Jayannavar AM Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042146. PubMed ID: 25375477 [TBL] [Abstract][Full Text] [Related]
8. Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine. Xu YY; Chen B; Liu J Phys Rev E; 2018 Feb; 97(2-1):022130. PubMed ID: 29548214 [TBL] [Abstract][Full Text] [Related]
9. Performance of an irreversible quantum Carnot engine with spin 12. Wu F; Chen L; Wu S; Sun F; Wu C J Chem Phys; 2006 Jun; 124(21):214702. PubMed ID: 16774426 [TBL] [Abstract][Full Text] [Related]
10. Realization of a Brownian engine to study transport phenomena: a semiclassical approach. Ghosh P; Shit A; Chattopadhyay S; Chaudhuri JR Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061112. PubMed ID: 20866383 [TBL] [Abstract][Full Text] [Related]
11. Achieving Carnot efficiency in a finite-power Brownian Carnot cycle with arbitrary temperature difference. Miura K; Izumida Y; Okuda K Phys Rev E; 2022 Mar; 105(3-1):034102. PubMed ID: 35428092 [TBL] [Abstract][Full Text] [Related]
12. Compatibility of Carnot efficiency with finite power in an underdamped Brownian Carnot cycle in small temperature-difference regime. Miura K; Izumida Y; Okuda K Phys Rev E; 2021 Apr; 103(4-1):042125. PubMed ID: 34006002 [TBL] [Abstract][Full Text] [Related]
16. Temperature fluctuations in mesoscopic systems. Fei Z; Ma YH Phys Rev E; 2024 Apr; 109(4-1):044101. PubMed ID: 38755872 [TBL] [Abstract][Full Text] [Related]
17. Microscopic theory of the Curzon-Ahlborn heat engine based on a Brownian particle. Chen YH; Chen JF; Fei Z; Quan HT Phys Rev E; 2022 Aug; 106(2-1):024105. PubMed ID: 36109948 [TBL] [Abstract][Full Text] [Related]
18. Performance at maximum figure of merit for a Brownian Carnot refrigerator. Contreras-Vergara O; Valencia-Ortega G; Sánchez-Salas N; Jiménez-Aquino JI Phys Rev E; 2024 Aug; 110(2-1):024123. PubMed ID: 39295046 [TBL] [Abstract][Full Text] [Related]