These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 11102086)

  • 1. High density collimated beams of relativistic ions produced by petawatt laser pulses in plasmas.
    Sentoku Y; Liseikina TV; Esirkepov TZ; Califano F; Naumova NM; Ueshima Y; Vshivkov VA; Kato Y; Mima K; Nishihara K; Pegoraro F; Bulanov SV
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt B):7271-81. PubMed ID: 11102086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient acceleration of electrons with counterpropagating intense laser pulses in vacuum and underdense plasma.
    Sheng ZM; Mima K; Zhang J; Meyer-Ter-Vehn J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016407. PubMed ID: 14995725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional simulations of ion acceleration from a foil irradiated by a short-pulse laser.
    Pukhov A
    Phys Rev Lett; 2001 Apr; 86(16):3562-5. PubMed ID: 11328023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction physics of multipicosecond Petawatt laser pulses with overdense plasma.
    Kemp AJ; Divol L
    Phys Rev Lett; 2012 Nov; 109(19):195005. PubMed ID: 23215393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle in cell simulation of laser-accelerated proton beams for radiation therapy.
    Fourkal E; Shahine B; Ding M; Li JS; Tajima T; Ma CM
    Med Phys; 2002 Dec; 29(12):2788-98. PubMed ID: 12512712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Channeling of relativistic laser pulses, surface waves, and electron acceleration.
    Naseri N; Pesme D; Rozmus W; Popov K
    Phys Rev Lett; 2012 Mar; 108(10):105001. PubMed ID: 22463415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generating overcritical dense relativistic electron beams via self-matching resonance acceleration.
    Liu B; Wang HY; Liu J; Fu LB; Xu YJ; Yan XQ; He XT
    Phys Rev Lett; 2013 Jan; 110(4):045002. PubMed ID: 25166171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron acceleration by few-cycle laser pulses with single-wavelength spot size.
    Dudnikova GI; Bychenkov VY; Maksimchuk A; Mourou G; Nees J; Bochkarev SG; Vshivkov VA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026416. PubMed ID: 12636831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactive dynamics of two copropagating laser beams in underdense plasmas.
    Wu HC; Sheng ZM; Zhang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026407. PubMed ID: 15447601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attosecond electron bunches.
    Naumova N; Sokolov I; Nees J; Maksimchuk A; Yanovsky V; Mourou G
    Phys Rev Lett; 2004 Nov; 93(19):195003. PubMed ID: 15600842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiation damping effects on the interaction of ultraintense laser pulses with an overdense plasma.
    Zhidkov A; Koga J; Sasaki A; Uesaka M
    Phys Rev Lett; 2002 May; 88(18):185002. PubMed ID: 12005689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonant self-trapping of high intensity Bessel beams in underdense plasmas.
    Fan J; Parra E; Kim KY; Alexeev I; Milchberg HM; Cooley J; Antonsen TM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056408. PubMed ID: 12059716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A laser wakefield acceleration facility using SG-II petawatt laser system.
    Liang X; Yi Y; Li S; Zhu P; Xie X; Liu H; Mu G; Liu Z; Guo A; Kang J; Yang Q; Zhu H; Gao Q; Sun M; Lu H; Ma Y; Mondal S; Papp D; Majorosi S; Lécz Z; Andreev A; Kahaly S; Kamperidis C; Hafz NAM; Zhu J
    Rev Sci Instrum; 2022 Mar; 93(3):033504. PubMed ID: 35364989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relativistic electron drift in overdense plasma produced by a superintense femtosecond laser pulse.
    Rastunkov VS; Krainov VP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):037402. PubMed ID: 15089449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of space-time self-focusing of a femtosecond relativistic laser pulse in an underdense plasma.
    Lontano M; Murusidze I
    Opt Express; 2003 Feb; 11(3):248-58. PubMed ID: 19461730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relativistic Acceleration of Electrons Injected by a Plasma Mirror into a Radially Polarized Laser Beam.
    Zaïm N; Thévenet M; Lifschitz A; Faure J
    Phys Rev Lett; 2017 Sep; 119(9):094801. PubMed ID: 28949590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser acceleration of ion bunches at the front surface of overdense plasmas.
    Macchi A; Cattani F; Liseykina TV; Cornolti F
    Phys Rev Lett; 2005 Apr; 94(16):165003. PubMed ID: 15904236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser-Ion Lens and Accelerator.
    Wang T; Khudik V; Shvets G
    Phys Rev Lett; 2021 Jan; 126(2):024801. PubMed ID: 33512173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadening of cyclotron resonance conditions in the relativistic interaction of an intense laser with overdense plasmas.
    Sano T; Tanaka Y; Iwata N; Hata M; Mima K; Murakami M; Sentoku Y
    Phys Rev E; 2017 Oct; 96(4-1):043209. PubMed ID: 29347491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collimated multi-MeV ion beams from high-intensity laser interactions with underdense plasma.
    Willingale L; Mangles SP; Nilson PM; Clarke RJ; Dangor AE; Kaluza MC; Karsch S; Lancaster KL; Mori WB; Najmudin Z; Schreiber J; Thomas AG; Wei MS; Krushelnick K
    Phys Rev Lett; 2006 Jun; 96(24):245002. PubMed ID: 16907250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.