These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 11102204)

  • 1. Angular structure of lacunarity, and the renormalization group.
    Ball RC; Caldarelli G; Flammini A
    Phys Rev Lett; 2000 Dec; 85(24):5134-7. PubMed ID: 11102204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directed self-avoiding walks in random media.
    Santra SB; Seitz WA; Klein DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):067101. PubMed ID: 11415255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-avoiding walks on scale-free networks.
    Herrero CP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016103. PubMed ID: 15697654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Where two fractals meet: the scaling of a self-avoiding walk on a percolation cluster.
    von Ferber C; Blavats'ka V; Folk R; Holovatch Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):035104. PubMed ID: 15524568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-avoiding walks and connective constants in small-world networks.
    Herrero CP; Saboyá M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026106. PubMed ID: 14525048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linear polymers in disordered media: the shortest, the longest, and the mean self-avoiding walk on percolation clusters.
    Janssen HK; Stenull O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011123. PubMed ID: 22400528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymptotic scaling behavior of self-avoiding walks on critical percolation clusters.
    Fricke N; Janke W
    Phys Rev Lett; 2014 Dec; 113(25):255701. PubMed ID: 25554895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Branching and annihilating random walks: exact results at low branching rate.
    Benitez F; Wschebor N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052132. PubMed ID: 23767512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Random walks on fractals and stretched exponential relaxation.
    Jund P; Jullien R; Campbell I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036131. PubMed ID: 11308733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multifractality of self-avoiding walks on percolation clusters.
    Blavatska V; Janke W
    Phys Rev Lett; 2008 Sep; 101(12):125701. PubMed ID: 18851389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalized contact process with n absorbing states.
    Hooyberghs J; Carlon E; Vanderzande C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036124. PubMed ID: 11580411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-space renormalization group for the transverse-field Ising model in two and three dimensions.
    Miyazaki R; Nishimori H; Ortiz G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051103. PubMed ID: 21728486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Random sequential renormalization and agglomerative percolation in networks: application to Erdös-Rényi and scale-free graphs.
    Bizhani G; Grassberger P; Paczuski M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066111. PubMed ID: 22304159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Violation of the des Cloizeaux relation for self-avoiding walks on Sierpinski square lattices.
    Marini F; Ordemann A; Porto M; Roman HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051102. PubMed ID: 17279872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directed percolation with incubation times.
    Jiménez-Dalmaroni A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011123. PubMed ID: 16907076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Universality classes for self-avoiding walks in a strongly disordered system.
    Braunstein LA; Buldyrev SV; Havlin S; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056128. PubMed ID: 12059668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absorbing state phase transitions with quenched disorder.
    Hooyberghs J; Iglói F; Vanderzande C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066140. PubMed ID: 15244700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong disorder fixed point in absorbing-state phase transitions.
    Hooyberghs J; Iglói F; Vanderzande C
    Phys Rev Lett; 2003 Mar; 90(10):100601. PubMed ID: 12688986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymers in long-range-correlated disorder.
    Blavats'ka V; von Ferber C; Holovatch Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):041102. PubMed ID: 11690005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex networks renormalization: flows and fixed points.
    Radicchi F; Ramasco JJ; Barrat A; Fortunato S
    Phys Rev Lett; 2008 Oct; 101(14):148701. PubMed ID: 18851585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.