These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
554 related articles for article (PubMed ID: 11102379)
1. Evolution of dosage compensation in Diptera: the gene maleless implements dosage compensation in Drosophila (Brachycera suborder) but its homolog in Sciara (Nematocera suborder) appears to play no role in dosage compensation. Ruiz MF; Esteban MR; Doñoro C; Goday C; Sánchez L Genetics; 2000 Dec; 156(4):1853-65. PubMed ID: 11102379 [TBL] [Abstract][Full Text] [Related]
2. The gene Sex-lethal of the Sciaridae family (order Diptera, suborder Nematocera) and its phylogeny in dipteran insects. Serna E; Gorab E; Ruiz MF; Goday C; Eirín-López JM; Sánchez L Genetics; 2004 Oct; 168(2):907-21. PubMed ID: 15514063 [TBL] [Abstract][Full Text] [Related]
3. Molecular analysis and developmental expression of the Sex-lethal gene of Sciara ocellaris (Diptera order, Nematocera suborder). Ruiz MF; Goday C; González P; Sánchez L Gene Expr Patterns; 2003 Jun; 3(3):341-6. PubMed ID: 12799082 [TBL] [Abstract][Full Text] [Related]
4. The maleless protein associates with the X chromosome to regulate dosage compensation in Drosophila. Kuroda MI; Kernan MJ; Kreber R; Ganetzky B; Baker BS Cell; 1991 Sep; 66(5):935-47. PubMed ID: 1653648 [TBL] [Abstract][Full Text] [Related]
5. The NTPase/helicase activities of Drosophila maleless, an essential factor in dosage compensation. Lee CG; Chang KA; Kuroda MI; Hurwitz J EMBO J; 1997 May; 16(10):2671-81. PubMed ID: 9184214 [TBL] [Abstract][Full Text] [Related]
6. The gene transformer-2 of Sciara (Diptera, Nematocera) and its effect on Drosophila sexual development. Martín I; Ruiz MF; Sánchez L BMC Dev Biol; 2011 Mar; 11():19. PubMed ID: 21406087 [TBL] [Abstract][Full Text] [Related]
7. Targeting of MOF, a putative histone acetyl transferase, to the X chromosome of Drosophila melanogaster. Gu W; Szauter P; Lucchesi JC Dev Genet; 1998; 22(1):56-64. PubMed ID: 9499580 [TBL] [Abstract][Full Text] [Related]
8. Drosophila maleless gene counteracts X global aneuploid effects in males. Bhadra U; Gandhi SG; Palaparthi R; Balyan MK; Pal-Bhadra M FEBS J; 2016 Sep; 283(18):3457-70. PubMed ID: 27456781 [TBL] [Abstract][Full Text] [Related]
9. Regulation of the sex-specific binding of the maleless dosage compensation protein to the male X chromosome in Drosophila. Gorman M; Kuroda MI; Baker BS Cell; 1993 Jan; 72(1):39-49. PubMed ID: 8422681 [TBL] [Abstract][Full Text] [Related]
10. Evidence that MSL-mediated dosage compensation in Drosophila begins at blastoderm. Franke A; Dernburg A; Bashaw GJ; Baker BS Development; 1996 Sep; 122(9):2751-60. PubMed ID: 8787749 [TBL] [Abstract][Full Text] [Related]
11. An analysis of maleless and histone H4 acetylation in Drosophila melanogaster spermatogenesis. Rastelli L; Kuroda MI Mech Dev; 1998 Feb; 71(1-2):107-17. PubMed ID: 9507080 [TBL] [Abstract][Full Text] [Related]
12. Structural insights reveal the specific recognition of roX RNA by the dsRNA-binding domains of the RNA helicase MLE and its indispensable role in dosage compensation in Drosophila. Lv M; Yao Y; Li F; Xu L; Yang L; Gong Q; Xu YZ; Shi Y; Fan YJ; Tang Y Nucleic Acids Res; 2019 Apr; 47(6):3142-3157. PubMed ID: 30649456 [TBL] [Abstract][Full Text] [Related]
13. MLE activates transcription via the minimal transactivation domain in Drosophila. Aratani S; Kageyama Y; Nakamura A; Fujita H; Fujii R; Nishioka K; Nakajima T Int J Mol Med; 2008 Apr; 21(4):469-76. PubMed ID: 18360693 [TBL] [Abstract][Full Text] [Related]
14. Dosage compensation in sciarids is achieved by hypertranscription of the single X chromosome in males. da Cunha PR; Granadino B; Perondini AL; Sánchez L Genetics; 1994 Nov; 138(3):787-90. PubMed ID: 7851774 [TBL] [Abstract][Full Text] [Related]
15. RNA-dependent association of the Drosophila maleless protein with the male X chromosome. Richter L; Bone JR; Kuroda MI Genes Cells; 1996 Mar; 1(3):325-36. PubMed ID: 9133666 [TBL] [Abstract][Full Text] [Related]
16. A mutually exclusive stem-loop arrangement in roX2 RNA is essential for X-chromosome regulation in Ilik IA; Maticzka D; Georgiev P; Gutierrez NM; Backofen R; Akhtar A Genes Dev; 2017 Oct; 31(19):1973-1987. PubMed ID: 29066499 [TBL] [Abstract][Full Text] [Related]
17. Structure, dynamics and roX2-lncRNA binding of tandem double-stranded RNA binding domains dsRBD1,2 of Drosophila helicase Maleless. Ankush Jagtap PK; Müller M; Masiewicz P; von Bülow S; Hollmann NM; Chen PC; Simon B; Thomae AW; Becker PB; Hennig J Nucleic Acids Res; 2019 May; 47(8):4319-4333. PubMed ID: 30805612 [TBL] [Abstract][Full Text] [Related]
18. Epigenetic spreading of the Drosophila dosage compensation complex from roX RNA genes into flanking chromatin. Kelley RL; Meller VH; Gordadze PR; Roman G; Davis RL; Kuroda MI Cell; 1999 Aug; 98(4):513-22. PubMed ID: 10481915 [TBL] [Abstract][Full Text] [Related]
19. [Diversity of MLE Helicase Functions in the Regulation of Gene Expression in Higher Eukaryotes]. Nikolenko JV; Georgieva SG; Kopytova DV Mol Biol (Mosk); 2023; 57(1):10-23. PubMed ID: 36976736 [TBL] [Abstract][Full Text] [Related]
20. The dosage compensation regulators MLE, MSL-1 and MSL-2 are interdependent since early embryogenesis in Drosophila. Rastelli L; Richman R; Kuroda MI Mech Dev; 1995 Oct; 53(2):223-33. PubMed ID: 8562424 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]