These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 11102506)

  • 1. The effect of lesions of the insular cortex on instrumental conditioning: evidence for a role in incentive memory.
    Balleine BW; Dickinson A
    J Neurosci; 2000 Dec; 20(23):8954-64. PubMed ID: 11102506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of lesions of the basolateral amygdala on instrumental conditioning.
    Balleine BW; Killcross AS; Dickinson A
    J Neurosci; 2003 Jan; 23(2):666-75. PubMed ID: 12533626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the nucleus accumbens in instrumental conditioning: Evidence of a functional dissociation between accumbens core and shell.
    Corbit LH; Muir JL; Balleine BW
    J Neurosci; 2001 May; 21(9):3251-60. PubMed ID: 11312310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incentive memory: evidence the basolateral amygdala encodes and the insular cortex retrieves outcome values to guide choice between goal-directed actions.
    Parkes SL; Balleine BW
    J Neurosci; 2013 May; 33(20):8753-63. PubMed ID: 23678118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of insular cortex and ventral striatum mediates the effect of incentive memory on choice between goal-directed actions.
    Parkes SL; Bradfield LA; Balleine BW
    J Neurosci; 2015 Apr; 35(16):6464-71. PubMed ID: 25904797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the hippocampus in instrumental conditioning.
    Corbit LH; Balleine BW
    J Neurosci; 2000 Jun; 20(11):4233-9. PubMed ID: 10818159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of prelimbic cortex in instrumental conditioning.
    Corbit LH; Balleine BW
    Behav Brain Res; 2003 Nov; 146(1-2):145-57. PubMed ID: 14643467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lesions of mediodorsal thalamus and anterior thalamic nuclei produce dissociable effects on instrumental conditioning in rats.
    Corbit LH; Muir JL; Balleine BW
    Eur J Neurosci; 2003 Sep; 18(5):1286-94. PubMed ID: 12956727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of the rat anterior cingulate cortex in control of instrumental responses guided by reward expectancy.
    Schweimer J; Hauber W
    Learn Mem; 2005; 12(3):334-42. PubMed ID: 15930509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Goal-directed instrumental action: contingency and incentive learning and their cortical substrates.
    Balleine BW; Dickinson A
    Neuropharmacology; 1998; 37(4-5):407-19. PubMed ID: 9704982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double dissociation of basolateral and central amygdala lesions on the general and outcome-specific forms of pavlovian-instrumental transfer.
    Corbit LH; Balleine BW
    J Neurosci; 2005 Jan; 25(4):962-70. PubMed ID: 15673677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of response-contingent incentives in lithium chloride-mediated suppression of an operant response.
    Meachum CL
    Q J Exp Psychol B; 1990 May; 42(2):175-95. PubMed ID: 2164238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lateral, not medial, prefrontal cortex contributes to punishment and aversive instrumental learning.
    Jean-Richard-Dit-Bressel P; McNally GP
    Learn Mem; 2016 Nov; 23(11):607-617. PubMed ID: 27918280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical stimulation of the insular cortex induces flavor-preferences in rats.
    Cubero I; Puerto A
    Brain Res; 2000 Jul; 872(1-2):134-40. PubMed ID: 10924685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of dopamine in the prelimbic cortex and the dorsomedial striatum in instrumental conditioning.
    Lex B; Hauber W
    Cereb Cortex; 2010 Apr; 20(4):873-83. PubMed ID: 19605519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lesion to the nigrostriatal dopamine system disrupts stimulus-response habit formation.
    Faure A; Haberland U; Condé F; El Massioui N
    J Neurosci; 2005 Mar; 25(11):2771-80. PubMed ID: 15772337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blockade of N-methyl-D-aspartate receptors in the insular cortex disrupts taste aversion and spatial memory formation.
    Gutiérrez H; Hernández-Echeagaray E; Ramírez-Amaya V; Bermúdez-Rattoni F
    Neuroscience; 1999 Mar; 89(3):751-8. PubMed ID: 10199610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitotoxic lesions of the gustatory thalamus eliminate consummatory but not instrumental successive negative contrast in rats.
    Sastre A; Reilly S
    Behav Brain Res; 2006 Jun; 170(1):34-40. PubMed ID: 16530861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acquisition of specific response-outcome associations requires NMDA receptor activation in the basolateral amygdala but not in the insular cortex.
    Parkes SL; Ferreira G; Coutureau E
    Neurobiol Learn Mem; 2016 Feb; 128():40-5. PubMed ID: 26740161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of cholecystokinin in the motivational control of instrumental action in rats.
    Balleine B; Dickinson A
    Behav Neurosci; 1994 Jun; 108(3):590-605. PubMed ID: 7917052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.