These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11102833)

  • 1. Digestion of legume starch granules by larvae of Zabrotes subfasciatus (Coleoptera: bruchidae) and the induction of alpha-amylases in response to different diets.
    Silva CP; Terra WR; Xavier-Filho J; Grossi de Sá MF; Isejima EM; DaMatta RA; Miguens FC; Bifano TD
    Insect Biochem Mol Biol; 2001 Jan; 31(1):41-50. PubMed ID: 11102833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of digestive alpha-amylases in larvae of Zabrotes subfasciatus (Coleoptera: Bruchidae) in response to ingestion of common bean alpha-amylase inhibitor 1.
    Silva CP; Terra WR; de Sá MF; Samuels RI; Isejima EM; Bifano TD; Almeida JS
    J Insect Physiol; 2001 Nov; 47(11):1283-1290. PubMed ID: 12770180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Host-mediated induction of alpha-amylases by larvae of the Mexican bean weevil Zabrotes subfasciatus (Coleoptera: Chrysomelidae: Bruchinae) is irreversible and observed from the initiation of the feeding period.
    Bifano TD; Samuels RI; Alexandre D; Silva CP
    Arch Insect Biochem Physiol; 2010 Aug; 74(4):247-60. PubMed ID: 20645418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognition and binding of the PF2 lectin to α-amylase from Zabrotes subfasciatus (Coleoptera:Bruchidae) larval midgut.
    Lagarda-Diaz I; Geiser D; Guzman-Partida AM; Winzerling J; Vazquez-Moreno L
    J Insect Sci; 2014; 14():. PubMed ID: 25528751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digestion of starch granules from maize, potato and wheat by larvae of the the yellow mealworm, Tenebrio molitor and the Mexican bean weevil, Zabrotes subfasciatus.
    Meireles EA; Carneiro CN; DaMatta RA; Samuels RI; Silva CP
    J Insect Sci; 2009; 9():43. PubMed ID: 19619014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protective mechanism of the Mexican bean weevil against high levels of alpha-amylase inhibitor in the common bean.
    Ishimoto M; Chrispeels MJ
    Plant Physiol; 1996 Jun; 111(2):393-401. PubMed ID: 8787024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular characterization of a bean alpha-amylase inhibitor that inhibits the alpha-amylase of the mexican bean weevil Zabrotes subfasciatus.
    Grossi de Sa MF; Mirkov TE; Ishimoto M; Colucci G; Bateman KS; Chrispeels MJ
    Planta; 1997; 203(3):295-303. PubMed ID: 9431678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of αAI-1 expressed in genetically modified cowpea on Zabrotes subfasciatus (Coleoptera: Chrysomelidae) and its parasitoid, Dinarmus basalis (Hymenoptera: Pteromalidae).
    Lüthi C; Alvarez-Alfageme F; Romeis J
    PLoS One; 2013; 8(6):e67785. PubMed ID: 23840776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular cloning of bruchid (Zabrotes subfasciatus) alpha-amylase cDNA and interactions of the expressed enzyme with bean amylase inhibitors.
    Grossi de Sa MF; Chrispeels MJ
    Insect Biochem Mol Biol; 1997 Apr; 27(4):271-81. PubMed ID: 9134709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insecticidal action of Bauhinia monandra leaf lectin (BmoLL) against Anagasta kuehniella (Lepidoptera: Pyralidae), Zabrotes subfasciatus and Callosobruchus maculatus (Coleoptera: Bruchidae).
    Macedo ML; das Graças Machado Freire M; da Silva MB; Coelho LC
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Apr; 146(4):486-98. PubMed ID: 16488638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of processing on some properties of cowpea (Vigna unguiculata), seed, protein, starch, flour and akara.
    Enwere NJ; McWatters KH; Phillips RD
    Int J Food Sci Nutr; 1998 Sep; 49(5):365-73. PubMed ID: 10367006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vicilins (7S storage globulins) of cowpea (Vigna unguiculata) seeds bind to chitinous structures of the midgut of Callosobruchus maculatus (Coleoptera: Bruchidae) larvae.
    Sales MP; Pimenta PP; Paes NS; Grossi-de-Sá MF; Xavier-Filho J
    Braz J Med Biol Res; 2001 Jan; 34(1):27-34. PubMed ID: 11151025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell structure and starch nature as key determinants of the digestion rate of starch in legume.
    Würsch P; Del Vedovo S; Koellreutter B
    Am J Clin Nutr; 1986 Jan; 43(1):25-9. PubMed ID: 3484604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and enzyme properties of Zabrotes subfasciatus alpha-amylase.
    Pelegrini PB; Murad AM; Grossi-de-Sá MF; Mello LV; Romeiro LA; Noronha EF; Caldas RA; Franco OL
    Arch Insect Biochem Physiol; 2006 Feb; 61(2):77-86. PubMed ID: 16416448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Phaseolus vulgaris (Fabaceae) seed coat on the embryonic and larval development of the cowpea weevil Callosobruchus maculatus (Coleoptera: Bruchidae).
    de Sá LF; Wermelinger TT; Ribeiro Eda S; Gravina Gde A; Fernandes KV; Xavier-Filho J; Venancio TM; Rezende GL; Oliveira AE
    J Insect Physiol; 2014 Jan; 60():50-7. PubMed ID: 24211390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Talisia esculenta lectin and larval development of Callosobruchus maculatus and Zabrotes subfasciatus (Coleoptera: Bruchidae).
    Macedo ML; das Graças Machado Freire M; Novello JC; Marangoni S
    Biochim Biophys Acta; 2002 Jun; 1571(2):83-8. PubMed ID: 12049788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The African yam bean seed lectin affects the development of the cowpea weevil but does not affect the development of larvae of the legume pod borer.
    Machuka JS; Okeola OG; Chrispeels MJ; Jackai LE
    Phytochemistry; 2000 Mar; 53(6):667-74. PubMed ID: 10746879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of bean bruchids Callosobruchus maculatus and Zabrotes subfasciatus (Coleoptera: Bruchidae) reared on resistant (IT81D-1045) and susceptible (Epace 10) Vigna unguiculata seeds: relationship with trypsin inhibitor and vicilin excretion.
    Sales MP; Andrade LB; Ary MB; Miranda MR; Teixeira FM; Oliveira AS; Fernandes KV; Xavier-Filho J
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Dec; 142(4):422-6. PubMed ID: 16246611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resistance of αAI-1 transgenic chickpea (Cicer arietinum) and cowpea (Vigna unguiculata) dry grains to bruchid beetles (Coleoptera: Chrysomelidae).
    Lüthi C; Alvarez-Alfageme F; Ehlers JD; Higgins TJ; Romeis J
    Bull Entomol Res; 2013 Aug; 103(4):373-81. PubMed ID: 23458831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Embryo is not required for initiation of alpha-amylase activity in germinating cowpea (Vigna unguiculata L.) seeds.
    Kaur P; Gupta AK; Kaur N
    Indian J Biochem Biophys; 2005 Jun; 42(3):161-5. PubMed ID: 23923558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.