These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 11105289)

  • 1. Computational modelling of blood flow through curved stenosed arteries.
    Yao H; Ang KC; Yeo JH; Sim EK
    J Med Eng Technol; 2000; 24(4):163-8. PubMed ID: 11105289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of curvature wall on the blood flow in stenosed artery: A computational study.
    Ahamad NA; Kamangar S; Badruddin IA
    Biomed Mater Eng; 2018; 29(3):319-332. PubMed ID: 29578467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational model for blood flow through highly curved arteries with asymmetric stenoses.
    Ang KC; Mazumdar J; Craig IH
    Australas Phys Eng Sci Med; 1997 Sep; 20(3):152-63. PubMed ID: 9409016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of artery wall curvature on the anatomical assessment of stenosis severity derived from fractional flow reserve: a computational fluid dynamics study.
    Govindaraju K; Viswanathan GN; Badruddin IA; Kamangar S; Salman Ahmed NJ; Al-Rashed AA
    Comput Methods Biomech Biomed Engin; 2016 Nov; 19(14):1541-9. PubMed ID: 27052093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of curvature and stenosis-like narrowing on wall shear stress in a coronary artery model with phasic flow.
    Nosovitsky VA; Ilegbusi OJ; Jiang J; Stone PH; Feldman CL
    Comput Biomed Res; 1997 Feb; 30(1):61-82. PubMed ID: 9134307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling.
    LaDisa JF; Olson LE; Douglas HA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2006 Jun; 5():40. PubMed ID: 16780592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.
    Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M
    Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of porous media of the stenosed artery wall to the coronary physiological diagnostic parameter: a computational fluid dynamic analysis.
    Govindaraju K; Kamangar S; Badruddin IA; Viswanathan GN; Badarudin A; Salman Ahmed NJ
    Atherosclerosis; 2014 Apr; 233(2):630-635. PubMed ID: 24549189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boundary conditions in simulation of stenosed coronary arteries.
    Mohammadi H; Bahramian F
    Cardiovasc Eng; 2009 Sep; 9(3):83-91. PubMed ID: 19688262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical analysis of blood flow through a stenosed artery using a coupled, multiscale simulation method.
    Shim EB; Kamm RD; Heldt T; Mark RG
    Comput Cardiol; 2000; 27():219-22. PubMed ID: 12085933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study on hemodynamic characteristics at the stenosed blood vessel using computational fluid dynamics simulations.
    Park YR; Kim SJ; Kim SJ; Kim JS; Kang HS; Kim GB
    J Biomed Nanotechnol; 2013 Jul; 9(7):1137-45. PubMed ID: 23909127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wall shear rate measurements in an elastic curved artery model.
    Weston MW; Tarbell JM
    Biorheology; 1997; 34(1):1-17. PubMed ID: 9176587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational analysis of flow in a curved tube model of the coronary arteries: effects of time-varying curvature.
    Santamarina A; Weydahl E; Siegel JM; Moore JE
    Ann Biomed Eng; 1998; 26(6):944-54. PubMed ID: 9846933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow in a catheterized curved artery with stenosis.
    Dash RK; Jayaraman G; Mehta KN
    J Biomech; 1999 Jan; 32(1):49-61. PubMed ID: 10050951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient blood flow in elastic coronary arteries with varying degrees of stenosis and dilatations: CFD modelling and parametric study.
    Wu J; Liu G; Huang W; Ghista DN; Wong KK
    Comput Methods Biomech Biomed Engin; 2015; 18(16):1835-45. PubMed ID: 25398021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A patient-specific virtual stenotic model of the coronary artery to analyze the relationship between fractional flow reserve and wall shear stress.
    Lee KE; Kim GT; Lee JS; Chung JH; Shin ES; Shim EB
    Int J Cardiol; 2016 Nov; 222():799-805. PubMed ID: 27522378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation.
    LaDisa JF; Guler I; Olson LE; Hettrick DA; Kersten JR; Warltier DC; Pagel PS
    Ann Biomed Eng; 2003 Sep; 31(8):972-80. PubMed ID: 12918912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling of flow and wall behaviour in a mildly stenosed tube.
    Lee KW; Xu XY
    Med Eng Phys; 2002 Nov; 24(9):575-86. PubMed ID: 12376044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational fluid dynamics study of common stent models inside idealised curved coronary arteries.
    Chen WX; Poon EK; Hutchins N; Thondapu V; Barlis P; Ooi A
    Comput Methods Biomech Biomed Engin; 2017 May; 20(6):671-681. PubMed ID: 28349764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.