These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 11105651)

  • 1. Interactions between medial prefrontal cortex and meso-limbic components of brain reward circuitry.
    Wise RA
    Prog Brain Res; 2000; 126():255-62. PubMed ID: 11105651
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of repeated cocaine on medial prefrontal cortical GABAB receptor modulation of neurotransmission in the mesocorticolimbic dopamine system.
    Jayaram P; Steketee JD
    J Neurochem; 2004 Aug; 90(4):839-47. PubMed ID: 15287889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity patterns in mesolimbic regions in rats during operant tasks for reward.
    Woodward DJ; Chang JY; Janak P; Azarov A; Anstrom K
    Prog Brain Res; 2000; 126():303-22. PubMed ID: 11105654
    [No Abstract]   [Full Text] [Related]  

  • 4. Role for dopamine in the behavioral functions of the prefrontal corticostriatal system: implications for mental disorders and psychotropic drug action.
    Jentsch JD; Roth RH; Taylor JR
    Prog Brain Res; 2000; 126():433-53. PubMed ID: 11105661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional relationship among medial prefrontal cortex, nucleus accumbens, and ventral tegmental area in locomotion and reward.
    Tzschentke TM; Schmidt WJ
    Crit Rev Neurobiol; 2000; 14(2):131-42. PubMed ID: 11513242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The roles of cannabinoid and dopamine receptor systems in neural emotional learning circuits: implications for schizophrenia and addiction.
    Laviolette SR; Grace AA
    Cell Mol Life Sci; 2006 Jul; 63(14):1597-613. PubMed ID: 16699809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The glutamate hypothesis of reinforcement learning.
    Pennartz CM; McNaughton BL; Mulder AB
    Prog Brain Res; 2000; 126():231-53. PubMed ID: 11105650
    [No Abstract]   [Full Text] [Related]  

  • 8. From arousal to cognition: the integrative position of the prefrontal cortex.
    Robbins TW
    Prog Brain Res; 2000; 126():469-83. PubMed ID: 11105663
    [No Abstract]   [Full Text] [Related]  

  • 9. Interactions between dopamine and excitatory amino acids in behavioral sensitization to psychostimulants.
    Kalivas PW
    Drug Alcohol Depend; 1995 Feb; 37(2):95-100. PubMed ID: 7758408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of an excitatory amino acid-mediated component of the ventral tegmental area local field potential response to medial prefrontal cortex stimulation: effect of acute d-amphetamine.
    Dommett EJ; Simpson J; Clark D; Overton PG
    J Neural Transm (Vienna); 2007 Feb; 114(2):161-72. PubMed ID: 16897608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping of chemical trigger zones for reward.
    Ikemoto S; Wise RA
    Neuropharmacology; 2004; 47 Suppl 1():190-201. PubMed ID: 15464137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limbic cortical-ventral striatal systems underlying appetitive conditioning.
    Parkinson JA; Cardinal RN; Everitt BJ
    Prog Brain Res; 2000; 126():263-85. PubMed ID: 11105652
    [No Abstract]   [Full Text] [Related]  

  • 13. New insights into the specificity and plasticity of reward and aversion encoding in the mesolimbic system.
    Volman SF; Lammel S; Margolis EB; Kim Y; Richard JM; Roitman MF; Lobo MK
    J Neurosci; 2013 Nov; 33(45):17569-76. PubMed ID: 24198347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Function and developmental origin of a mesocortical inhibitory circuit.
    Kabanova A; Pabst M; Lorkowski M; Braganza O; Boehlen A; Nikbakht N; Pothmann L; Vaswani AR; Musgrove R; Di Monte DA; Sauvage M; Beck H; Blaess S
    Nat Neurosci; 2015 Jun; 18(6):872-82. PubMed ID: 25961790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential modulation by nicotine of substantia nigra versus ventral tegmental area dopamine neurons.
    Keath JR; Iacoviello MP; Barrett LE; Mansvelder HD; McGehee DS
    J Neurophysiol; 2007 Dec; 98(6):3388-96. PubMed ID: 17942622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Illuminating subcortical GABAergic and glutamatergic circuits for reward and aversion.
    Gordon-Fennell A; Stuber GD
    Neuropharmacology; 2021 Oct; 198():108725. PubMed ID: 34375625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug-activation of brain reward pathways.
    Wise RA
    Drug Alcohol Depend; 1998; 51(1-2):13-22. PubMed ID: 9716927
    [No Abstract]   [Full Text] [Related]  

  • 18. Glutamate-dopamine cotransmission and reward processing in addiction.
    Lapish CC; Seamans JK; Chandler LJ
    Alcohol Clin Exp Res; 2006 Sep; 30(9):1451-65. PubMed ID: 16930207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reward-dependent learning in neuronal networks for planning and decision making.
    Dehaene S; Changeux JP
    Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential effects of haloperidol on phencyclidine-induced reduction in substance P contents in rat brain regions.
    Shirayama Y; Mitsushio H; Takahashi K; Nishikawa T
    Synapse; 2000 Mar; 35(4):292-9. PubMed ID: 10657039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.