These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 11105673)

  • 1. Impact of neuroprosthetic applications on functional recovery.
    Chapin JK
    Prog Brain Res; 2000; 128():115-20. PubMed ID: 11105673
    [No Abstract]   [Full Text] [Related]  

  • 2. Enter the cyborgs. Promise and peril in a marriage of brains and silicon.
    Boyce N
    US News World Rep; 2002 May; 132(16):56-8. PubMed ID: 12026874
    [No Abstract]   [Full Text] [Related]  

  • 3. Control of a neuroprosthesis for grasping using off-line classification of electrocorticographic signals: case study.
    Márquez-Chin C; Popovic MR; Cameron T; Lozano AM; Chen R
    Spinal Cord; 2009 Nov; 47(11):802-8. PubMed ID: 19381156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Principles underlying functional electrical stimulation techniques.
    Jaeger RJ
    J Spinal Cord Med; 1996 Apr; 19(2):93-6. PubMed ID: 8732876
    [No Abstract]   [Full Text] [Related]  

  • 5. Implanted functional electrical stimulation: an alternative for standing and walking in pediatric spinal cord injury.
    Johnston TE; Betz RR; Smith BT; Mulcahey MJ
    Spinal Cord; 2003 Mar; 41(3):144-52. PubMed ID: 12612616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The functional impact of the Freehand System on tetraplegic hand function. Clinical Results.
    Taylor P; Esnouf J; Hobby J
    Spinal Cord; 2002 Nov; 40(11):560-6. PubMed ID: 12411963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical motor areas and their properties: implications for neuroprosthetics.
    Cheney PD; Hill-Karrer J; Belhaj-Saïf A; McKiernan BJ; Park MC; Marcario JK
    Prog Brain Res; 2000; 128():135-60. PubMed ID: 11105675
    [No Abstract]   [Full Text] [Related]  

  • 8. Upper extremity neuroprostheses using functional electrical stimulation.
    Scott TR; Peckham PH; Keith MW
    Baillieres Clin Neurol; 1995 Apr; 4(1):57-75. PubMed ID: 7633785
    [No Abstract]   [Full Text] [Related]  

  • 9. [Functional rehabilitation of spinal cord injured persons using neuroprostheses].
    Rupp R; Abel R
    Orthopade; 2005 Feb; 34(2):144-51. PubMed ID: 15650822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Network level properties of short-term plasticity in the somatosensory system.
    Krupa DJ; Nicolelis MA
    Prog Brain Res; 2000; 128():161-72. PubMed ID: 11105676
    [No Abstract]   [Full Text] [Related]  

  • 11. Combinatory electrical and pharmacological neuroprosthetic interfaces to regain motor function after spinal cord injury.
    Musienko P; van den Brand R; Maerzendorfer O; Larmagnac A; Courtine G
    IEEE Trans Biomed Eng; 2009 Nov; 56(11 Pt 2):2707-11. PubMed ID: 19635690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Spinal cord stepping electrostimulation as a method for recovery of locomotor activity in vertebrogenic myelopathies].
    Shapkova EIu; Mushkin AIu
    Med Tekh; 2002; (6):29-32. PubMed ID: 12506746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential growth of axons from sensory and motor neurons through a regenerative electrode: a stereological, retrograde tracer, and functional study in the rat.
    Negredo P; Castro J; Lago N; Navarro X; Avendaño C
    Neuroscience; 2004; 128(3):605-15. PubMed ID: 15381289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laufband (LB) therapy in spinal cord lesioned persons.
    Wernig A; Nanassy A; Müller S
    Prog Brain Res; 2000; 128():89-97. PubMed ID: 11105671
    [No Abstract]   [Full Text] [Related]  

  • 15. Spinal and supraspinal plasticity after incomplete spinal cord injury: correlations between functional magnetic resonance imaging and engaged locomotor networks.
    Dobkin BH
    Prog Brain Res; 2000; 128():99-111. PubMed ID: 11105672
    [No Abstract]   [Full Text] [Related]  

  • 16. [Spinal cord injuries. An intact nerve can be enough for a successful phrenic nerve stimulation].
    Karlsson AK; Dernevik L; Houltz B
    Lakartidningen; 2009 Mar 11-17; 106(11):779. PubMed ID: 19418801
    [No Abstract]   [Full Text] [Related]  

  • 17. Regenerating motor bridge axons refine connections and synapse on lumbar motoneurons to bypass chronic spinal cord injury.
    Campos LW; Chakrabarty S; Haque R; Martin JH
    J Comp Neurol; 2008 Feb; 506(5):838-50. PubMed ID: 18076081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epidural spinal-cord stimulation facilitates recovery of functional walking following incomplete spinal-cord injury.
    Carhart MR; He J; Herman R; D'Luzansky S; Willis WT
    IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):32-42. PubMed ID: 15068185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of current and future neural prostheses.
    Popovic DB
    Med Eng Phys; 2003 Jan; 25(1):1-2. PubMed ID: 12485780
    [No Abstract]   [Full Text] [Related]  

  • 20. Long term assessment of axonal regeneration through polyimide regenerative electrodes to interface the peripheral nerve.
    Lago N; Ceballos D; Rodríguez FJ; Stieglitz T; Navarro X
    Biomaterials; 2005 May; 26(14):2021-31. PubMed ID: 15576176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.