BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

503 related articles for article (PubMed ID: 11106168)

  • 1. Modification of the substrate specificity of porcine pepsin for the enzymatic production of bovine hide gelatin.
    Galea CA; Dalrymple BP; Kuypers R; Blakeley R
    Protein Sci; 2000 Oct; 9(10):1947-59. PubMed ID: 11106168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monkey pepsinogens and pepsins. IV. The amino acid sequence of the activation peptide segment of Japanese monkey pepsinogen.
    Kageyama T; Takahashi K
    J Biochem; 1980 Jul; 88(1):9-16. PubMed ID: 6773933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of kininogenase activity of an acidic proteinase isolated from human kidney.
    Gomes RA; Juliano L; Chagas JR; Hial V
    Can J Physiol Pharmacol; 1997 Jun; 75(6):757-61. PubMed ID: 9276160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the P2' and P3' specificities of thrombin using fluorescence-quenched substrates and mapping of the subsites by mutagenesis.
    Le Bonniec BF; Myles T; Johnson T; Knight CG; Tapparelli C; Stone SR
    Biochemistry; 1996 Jun; 35(22):7114-22. PubMed ID: 8679538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of S'1 loop residues in the substrate specificities of pepsin A and chymosin.
    Kageyama T
    Biochemistry; 2004 Dec; 43(48):15122-30. PubMed ID: 15568804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the binding preferences/specificity in the active site of human cathepsin E.
    Rao-Naik C; Guruprasad K; Batley B; Rapundalo S; Hill J; Blundell T; Kay J; Dunn BM
    Proteins; 1995 Jun; 22(2):168-81. PubMed ID: 7567964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secondary substrate binding in aspartic proteinases: contributions of subsites S3 and S'2 to kcat.
    Balbaa M; Cunningham A; Hofmann T
    Arch Biochem Biophys; 1993 Nov; 306(2):297-303. PubMed ID: 8215428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cleavage of the X-Pro peptide bond by pepsin is specific for the trans isomer.
    Vance JE; LeBlanc DA; London RE
    Biochemistry; 1997 Oct; 36(43):13232-40. PubMed ID: 9341212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in the P1' substrate specificities of pepsin A and chymosin.
    Kageyama H; Ueda H; Tezuka T; Ogasawara A; Narita Y; Kageyama T; Ichinose M
    J Biochem; 2010 Feb; 147(2):167-74. PubMed ID: 19819898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The 2.0 A crystal structure and substrate specificity of the KDEL-tailed cysteine endopeptidase functioning in programmed cell death of Ricinus communis endosperm.
    Than ME; Helm M; Simpson DJ; Lottspeich F; Huber R; Gietl C
    J Mol Biol; 2004 Mar; 336(5):1103-16. PubMed ID: 15037072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pH dependence of the hydrolysis of chromogenic substrates of the type, Lys-Pro-Xaa-Yaa-Phe-(NO2)Phe-Arg-Leu, by selected aspartic proteinases: evidence for specific interactions in subsites S3 and S2.
    Dunn BM; Valler MJ; Rolph CE; Foundling SI; Jimenez M; Kay J
    Biochim Biophys Acta; 1987 Jun; 913(2):122-30. PubMed ID: 3109484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploration of subsite binding specificity of human cathepsin D through kinetics and rule-based molecular modeling.
    Scarborough PE; Guruprasad K; Topham C; Richo GR; Conner GE; Blundell TL; Dunn BM
    Protein Sci; 1993 Feb; 2(2):264-76. PubMed ID: 8443603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [p-Nitroanilides of amino acids and peptides and fluorescence peptide with inner fluorescence quenching as substrates for cathepsins H, B, D and high molecular weight aspartic peptidase in the brain].
    Azarian AV; Agatian GL; Galoian AA
    Biokhimiia; 1987 Dec; 52(12):2033-7. PubMed ID: 3328984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of acetylcholinesterase with the G4 domain of the laminin alpha1-chain.
    Johnson G; Swart C; Moore SW
    Biochem J; 2008 May; 411(3):507-14. PubMed ID: 18215127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering the substrate specificity of rhizopuspepsin: the role of Asp 77 of fungal aspartic proteinases in facilitating the cleavage of oligopeptide substrates with lysine in P1.
    Lowther WT; Majer P; Dunn BM
    Protein Sci; 1995 Apr; 4(4):689-702. PubMed ID: 7613467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specificity of immobilized porcine pepsin in H/D exchange compatible conditions.
    Hamuro Y; Coales SJ; Molnar KS; Tuske SJ; Morrow JA
    Rapid Commun Mass Spectrom; 2008 Apr; 22(7):1041-6. PubMed ID: 18327892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the insertion loop around tryptophan 148 in tthe activity of thrombin.
    DiBella EE; Scheraga HA
    Biochemistry; 1996 Apr; 35(14):4427-33. PubMed ID: 8605192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The His-Pro-Phe motif of angiotensinogen is a crucial determinant of the substrate specificity of renin.
    Nakagawa T; Akaki J; Satou R; Takaya M; Iwata H; Katsurada A; Nishiuchi K; Ohmura Y; Suzuki F; Nakamura Y
    Biol Chem; 2007 Feb; 388(2):237-46. PubMed ID: 17261087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of Tyr13 and Phe219 in the unique substrate specificity of pepsin B.
    Kageyama T
    Biochemistry; 2006 Dec; 45(48):14415-26. PubMed ID: 17128981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active-site specificity of digestive aspartic peptidases from the four species of Plasmodium that infect humans using chromogenic combinatorial peptide libraries.
    Beyer BB; Johnson JV; Chung AY; Li T; Madabushi A; Agbandje-McKenna M; McKenna R; Dame JB; Dunn BM
    Biochemistry; 2005 Feb; 44(6):1768-79. PubMed ID: 15697202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.