BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 11106175)

  • 1. Engineering the substrate specificity of Escherichia coli asparaginase. II. Selective reduction of glutaminase activity by amino acid replacements at position 248.
    Derst C; Henseling J; Röhm KH
    Protein Sci; 2000 Oct; 9(10):2009-17. PubMed ID: 11106175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico engineering of L-asparaginase to have reduced glutaminase side activity for effective treatment of acute lymphoblastic leukemia.
    Ln R; Doble M; Rekha VP; Pulicherla KK
    J Pediatr Hematol Oncol; 2011 Dec; 33(8):617-21. PubMed ID: 22042278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning, expression and characterisation of Erwinia carotovora L-asparaginase.
    Kotzia GA; Labrou NE
    J Biotechnol; 2005 Oct; 119(4):309-23. PubMed ID: 15951039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The differential ability of asparagine and glutamine in promoting the closed/active enzyme conformation rationalizes the Wolinella succinogenes L-asparaginase substrate specificity.
    Nguyen HA; Durden DL; Lavie A
    Sci Rep; 2017 Jan; 7():41643. PubMed ID: 28139703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional insights into Erwinia carotovora L-asparaginase.
    Papageorgiou AC; Posypanova GA; Andersson CS; Sokolov NN; Krasotkina J
    FEBS J; 2008 Sep; 275(17):4306-16. PubMed ID: 18647344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of glutaminase-free L-asparaginase from Pectobacterium carotovorum MTCC 1428.
    Kumar S; Venkata Dasu V; Pakshirajan K
    Bioresour Technol; 2011 Jan; 102(2):2077-82. PubMed ID: 20832300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exhaustive mutagenesis of six secondary active-site residues in Escherichia coli chorismate mutase shows the importance of hydrophobic side chains and a helix N-capping position for stability and catalysis.
    Lassila JK; Keeffe JR; Kast P; Mayo SL
    Biochemistry; 2007 Jun; 46(23):6883-91. PubMed ID: 17506527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-step purification and kinetic properties of the recombinant L-asparaginase from Erwinia carotovora.
    Krasotkina J; Borisova AA; Gervaziev YV; Sokolov NN
    Biotechnol Appl Biochem; 2004 Apr; 39(Pt 2):215-21. PubMed ID: 15032742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of Helicobacter pylori L-asparaginase at 1.4 A resolution.
    Dhavala P; Papageorgiou AC
    Acta Crystallogr D Biol Crystallogr; 2009 Dec; 65(Pt 12):1253-61. PubMed ID: 19966411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Substrate specificity, inhibitors and kinetics of deamidase AG (asparaginase-glutaminase) from Pseudomonas fluorescens AG].
    Kovalenko NA; Tsvetkova TA; Nikolaev AIa
    Vopr Med Khim; 1977; 23(5):618-22. PubMed ID: 413263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel mutant of Escherichia coli asparaginase II to reduction of the glutaminase activity in treatment of acute lymphocytic leukemia by molecular dynamics simulations and QM-MM studies.
    Ardalan N; Mirzaie S; Sepahi AA; Khavari-Nejad RA
    Med Hypotheses; 2018 Mar; 112():7-17. PubMed ID: 29447943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased folding stability of TEM-1 beta-lactamase by in vitro selection.
    Kather I; Jakob RP; Dobbek H; Schmid FX
    J Mol Biol; 2008 Oct; 383(1):238-51. PubMed ID: 18706424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lid L11 of the glutamine amidotransferase domain of CTP synthase mediates allosteric GTP activation of glutaminase activity.
    Willemoës M; Mølgaard A; Johansson E; Martinussen J
    FEBS J; 2005 Feb; 272(3):856-64. PubMed ID: 15670165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective reduction in glutaminase activity of l‑Asparaginase by asparagine 248 to serine mutation: A combined computational and experimental effort in blood cancer treatment.
    Aghaeepoor M; Akbarzadeh A; Mirzaie S; Hadian A; Jamshidi Aval S; Dehnavi E
    Int J Biol Macromol; 2018 Dec; 120(Pt B):2448-2457. PubMed ID: 30193917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acid residues adjacent to the catalytic cavity of tetramer L-asparaginase II contribute significantly to its catalytic efficiency and thermostability.
    Long S; Zhang X; Rao Z; Chen K; Xu M; Yang T; Yang S
    Enzyme Microb Technol; 2016 Jan; 82():15-22. PubMed ID: 26672444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering thermal stability of L-asparaginase by in vitro directed evolution.
    Kotzia GA; Labrou NE
    FEBS J; 2009 Mar; 276(6):1750-61. PubMed ID: 19220855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD.
    Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD
    Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyperthermophilic asparaginase mutants with enhanced substrate affinity and antineoplastic activity: structural insights on their mechanism of action.
    Bansal S; Srivastava A; Mukherjee G; Pandey R; Verma AK; Mishra P; Kundu B
    FASEB J; 2012 Mar; 26(3):1161-71. PubMed ID: 22166247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutational analysis of Thermus caldophilus GK24 beta-glycosidase: role of His119 in substrate binding and enzyme activity.
    Oh EJ; Lee YJ; Chol JJ; Seo MS; Lee MS; Kim GA; Kwon ST
    J Microbiol Biotechnol; 2008 Feb; 18(2):287-94. PubMed ID: 18309273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preliminary crystallographic studies of Y25F mutant of periplasmic Escherichia coli L-asparaginase.
    Kozak M; Jaskólski M; Röhm KH
    Acta Biochim Pol; 2000; 47(3):807-14. PubMed ID: 11310979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.