These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
433 related articles for article (PubMed ID: 11106395)
1. Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG. Lau AY; Wyatt MD; Glassner BJ; Samson LD; Ellenberger T Proc Natl Acad Sci U S A; 2000 Dec; 97(25):13573-8. PubMed ID: 11106395 [TBL] [Abstract][Full Text] [Related]
2. Structural studies of human alkyladenine glycosylase and E. coli 3-methyladenine glycosylase. Hollis T; Lau A; Ellenberger T Mutat Res; 2000 Aug; 460(3-4):201-10. PubMed ID: 10946229 [TBL] [Abstract][Full Text] [Related]
3. Crystallizing thoughts about DNA base excision repair. Hollis T; Lau A; Ellenberger T Prog Nucleic Acid Res Mol Biol; 2001; 68():305-14. PubMed ID: 11554308 [TBL] [Abstract][Full Text] [Related]
4. Active-site clashes prevent the human 3-methyladenine DNA glycosylase from improperly removing bases. Connor EE; Wyatt MD Chem Biol; 2002 Sep; 9(9):1033-41. PubMed ID: 12323378 [TBL] [Abstract][Full Text] [Related]
5. Human alkyladenine DNA glycosylase uses acid-base catalysis for selective excision of damaged purines. O'Brien PJ; Ellenberger T Biochemistry; 2003 Oct; 42(42):12418-29. PubMed ID: 14567703 [TBL] [Abstract][Full Text] [Related]
6. Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase. Engelward BP; Weeda G; Wyatt MD; Broekhof JL; de Wit J; Donker I; Allan JM; Gold B; Hoeijmakers JH; Samson LD Proc Natl Acad Sci U S A; 1997 Nov; 94(24):13087-92. PubMed ID: 9371804 [TBL] [Abstract][Full Text] [Related]
7. Effects of hydrogen bonding within a damaged base pair on the activity of wild type and DNA-intercalating mutants of human alkyladenine DNA glycosylase. Vallur AC; Feller JA; Abner CW; Tran RK; Bloom LB J Biol Chem; 2002 Aug; 277(35):31673-8. PubMed ID: 12077143 [TBL] [Abstract][Full Text] [Related]
8. Base excision and DNA binding activities of human alkyladenine DNA glycosylase are sensitive to the base paired with a lesion. Abner CW; Lau AY; Ellenberger T; Bloom LB J Biol Chem; 2001 Apr; 276(16):13379-87. PubMed ID: 11278716 [TBL] [Abstract][Full Text] [Related]
9. Slow base excision by human alkyladenine DNA glycosylase limits the rate of formation of AP sites and AP endonuclease 1 does not stimulate base excision. Maher RL; Vallur AC; Feller JA; Bloom LB DNA Repair (Amst); 2007 Jan; 6(1):71-81. PubMed ID: 17018265 [TBL] [Abstract][Full Text] [Related]
10. Dissecting the broad substrate specificity of human 3-methyladenine-DNA glycosylase. O'Brien PJ; Ellenberger T J Biol Chem; 2004 Mar; 279(11):9750-7. PubMed ID: 14688248 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure and mutational analysis of human uracil-DNA glycosylase: structural basis for specificity and catalysis. Mol CD; Arvai AS; Slupphaug G; Kavli B; Alseth I; Krokan HE; Tainer JA Cell; 1995 Mar; 80(6):869-78. PubMed ID: 7697717 [TBL] [Abstract][Full Text] [Related]
12. Recognition and processing of a new repertoire of DNA substrates by human 3-methyladenine DNA glycosylase (AAG). Lee CY; Delaney JC; Kartalou M; Lingaraju GM; Maor-Shoshani A; Essigmann JM; Samson LD Biochemistry; 2009 Mar; 48(9):1850-61. PubMed ID: 19219989 [TBL] [Abstract][Full Text] [Related]
13. Search for DNA damage by human alkyladenine DNA glycosylase involves early intercalation by an aromatic residue. Hendershot JM; O'Brien PJ J Biol Chem; 2017 Sep; 292(39):16070-16080. PubMed ID: 28747435 [TBL] [Abstract][Full Text] [Related]
14. The efficiency of hypoxanthine excision by alkyladenine DNA glycosylase is altered by changes in nearest neighbor bases. Vallur AC; Maher RL; Bloom LB DNA Repair (Amst); 2005 Sep; 4(10):1088-98. PubMed ID: 15990363 [TBL] [Abstract][Full Text] [Related]
15. A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Slupphaug G; Mol CD; Kavli B; Arvai AS; Krokan HE; Tainer JA Nature; 1996 Nov; 384(6604):87-92. PubMed ID: 8900285 [TBL] [Abstract][Full Text] [Related]
16. Crystal structures of 3-methyladenine DNA glycosylase MagIII and the recognition of alkylated bases. Eichman BF; O'Rourke EJ; Radicella JP; Ellenberger T EMBO J; 2003 Oct; 22(19):4898-909. PubMed ID: 14517230 [TBL] [Abstract][Full Text] [Related]
17. DNA bending and a flip-out mechanism for base excision by the helix-hairpin-helix DNA glycosylase, Escherichia coli AlkA. Hollis T; Ichikawa Y; Ellenberger T EMBO J; 2000 Feb; 19(4):758-66. PubMed ID: 10675345 [TBL] [Abstract][Full Text] [Related]
18. The formation of catalytically competent enzyme-substrate complex is not a bottleneck in lesion excision by human alkyladenine DNA glycosylase. Kuznetsov NA; Kiryutin AS; Kuznetsova AA; Panov MS; Barsukova MO; Yurkovskaya AV; Fedorova OS J Biomol Struct Dyn; 2017 Apr; 35(5):950-967. PubMed ID: 27025273 [TBL] [Abstract][Full Text] [Related]
19. Activity of Escherichia coli DNA-glycosylases on DNA damaged by methylating and ethylating agents and influence of 3-substituted adenine derivatives. Tudek B; Van Zeeland AA; Kusmierek JT; Laval J Mutat Res; 1998 Mar; 407(2):169-76. PubMed ID: 9637245 [TBL] [Abstract][Full Text] [Related]
20. Product-assisted catalysis in base-excision DNA repair. Fromme JC; Bruner SD; Yang W; Karplus M; Verdine GL Nat Struct Biol; 2003 Mar; 10(3):204-11. PubMed ID: 12592398 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]