These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 11106614)
1. Modeling and docking the endothelin G-protein-coupled receptor. Orry AJ; Wallace BA Biophys J; 2000 Dec; 79(6):3083-94. PubMed ID: 11106614 [TBL] [Abstract][Full Text] [Related]
2. Structure determination of the fourth cytoplasmic loop and carboxyl terminal domain of bovine rhodopsin. Yeagle PL; Alderfer JL; Albert AD Mol Vis; 1996 Dec; 2():12. PubMed ID: 9238089 [TBL] [Abstract][Full Text] [Related]
3. Ligand-supported homology modeling of the human angiotensin II type 1 (AT(1)) receptor: insights into the molecular determinants of telmisartan binding. Patny A; Desai PV; Avery MA Proteins; 2006 Dec; 65(4):824-42. PubMed ID: 17034041 [TBL] [Abstract][Full Text] [Related]
4. Three dimensional structure of the seventh transmembrane helical domain of the G-protein receptor, rhodopsin. Yeagle PL; Danis C; Choi G; Alderfer JL; Albert AD Mol Vis; 2000 Jul; 6():125-31. PubMed ID: 10930473 [TBL] [Abstract][Full Text] [Related]
5. Protein-based virtual screening of chemical databases. II. Are homology models of G-Protein Coupled Receptors suitable targets? Bissantz C; Bernard P; Hibert M; Rognan D Proteins; 2003 Jan; 50(1):5-25. PubMed ID: 12471595 [TBL] [Abstract][Full Text] [Related]
6. Molecular modeling of A1 and A2A adenosine receptors: comparison of rhodopsin- and beta2-adrenergic-based homology models through the docking studies. Yuzlenko O; Kieć-Kononowicz K J Comput Chem; 2009 Jan; 30(1):14-32. PubMed ID: 18496794 [TBL] [Abstract][Full Text] [Related]
7. First principles predictions of the structure and function of g-protein-coupled receptors: validation for bovine rhodopsin. Trabanino RJ; Hall SE; Vaidehi N; Floriano WB; Kam VW; Goddard WA Biophys J; 2004 Apr; 86(4):1904-21. PubMed ID: 15041637 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional models of histamine H3 receptor antagonist complexes and their pharmacophore. Axe FU; Bembenek SD; Szalma S J Mol Graph Model; 2006 May; 24(6):456-64. PubMed ID: 16386444 [TBL] [Abstract][Full Text] [Related]
9. A strategy using NMR peptide structures of thromboxane A2 receptor as templates to construct ligand-recognition pocket of prostacyclin receptor. Ruan CH; Wu J; Ruan KH BMC Biochem; 2005 Nov; 6():23. PubMed ID: 16271145 [TBL] [Abstract][Full Text] [Related]
10. Identification of specific intracellular domains of the human ETA receptor required for ligand binding and signal transduction. Hashido K; Adachi M; Gamou T; Watanabe T; Furuichi Y; Miyamoto C Cell Mol Biol Res; 1993; 39(1):3-12. PubMed ID: 8287069 [TBL] [Abstract][Full Text] [Related]
11. Ligand binding domain of the human endothelin-B subtype receptor. Wada K; Hashido K; Terashima H; Adachi M; Fujii Y; Hiraoka O; Furuichi Y; Miyamoto C Protein Expr Purif; 1995 Jun; 6(3):228-36. PubMed ID: 7663155 [TBL] [Abstract][Full Text] [Related]
12. Light-activated rhodopsin induces structural binding motif in G protein alpha subunit. Kisselev OG; Kao J; Ponder JW; Fann YC; Gautam N; Marshall GR Proc Natl Acad Sci U S A; 1998 Apr; 95(8):4270-5. PubMed ID: 9539726 [TBL] [Abstract][Full Text] [Related]
13. The first and second cytoplasmic loops of the G-protein receptor, rhodopsin, independently form beta-turns. Yeagle PL; Alderfer JL; Salloum AC; Ali L; Albert AD Biochemistry; 1997 Apr; 36(13):3864-9. PubMed ID: 9092816 [TBL] [Abstract][Full Text] [Related]
14. Exploring the structure of opioid receptors with homology modeling based on single and multiple templates and subsequent docking: a comparative study. Bera I; Laskar A; Ghoshal N J Mol Model; 2011 May; 17(5):1207-21. PubMed ID: 20661609 [TBL] [Abstract][Full Text] [Related]
15. Functional analysis of cell-free-produced human endothelin B receptor reveals transmembrane segment 1 as an essential area for ET-1 binding and homodimer formation. Klammt C; Srivastava A; Eifler N; Junge F; Beyermann M; Schwarz D; Michel H; Doetsch V; Bernhard F FEBS J; 2007 Jul; 274(13):3257-69. PubMed ID: 17535295 [TBL] [Abstract][Full Text] [Related]
16. Peptide interactions with G-protein coupled receptors. Marshall GR Biopolymers; 2001; 60(3):246-77. PubMed ID: 11774230 [TBL] [Abstract][Full Text] [Related]
17. Structure-based identification of binding sites, native ligands and potential inhibitors for G-protein coupled receptors. Cavasotto CN; Orry AJ; Abagyan RA Proteins; 2003 May; 51(3):423-33. PubMed ID: 12696053 [TBL] [Abstract][Full Text] [Related]
18. Three-dimensional model of the human urotensin-II receptor: docking of human urotensin-II and nonpeptide antagonists in the binding site and comparison with an antagonist pharmacophore model. Lescot E; Sopkova-de Oliveira Santos J; Colloc'h N; Rodrigo J; Milazzo-Segalas I; Bureau R; Rault S Proteins; 2008 Oct; 73(1):173-84. PubMed ID: 18409194 [TBL] [Abstract][Full Text] [Related]
19. Active peptidic mimics of the second intracellular loop of the V(1A) vasopressin receptor are structurally related to the second intracellular rhodopsin loop: a combined 1H NMR and biochemical study. Déméné H; Granier S; Muller D; Guillon G; Dufour MN; Delsuc MA; Hibert M; Pascal R; Mendre C Biochemistry; 2003 Jul; 42(27):8204-13. PubMed ID: 12846569 [TBL] [Abstract][Full Text] [Related]
20. Modeling and docking of the three-dimensional structure of the human melanocortin 4 receptor. Yang X; Wang Z; Dong W; Ling L; Yang H; Chen R J Protein Chem; 2003 May; 22(4):335-44. PubMed ID: 13678297 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]