These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 11106619)

  • 1. Design of supported membranes tethered via metal-affinity ligand-receptor pairs.
    Rädler U; Mack J; Persike N; Jung G; Tampé R
    Biophys J; 2000 Dec; 79(6):3144-52. PubMed ID: 11106619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The protein-tethered lipid bilayer: a novel mimic of the biological membrane.
    Giess F; Friedrich MG; Heberle J; Naumann RL; Knoll W
    Biophys J; 2004 Nov; 87(5):3213-20. PubMed ID: 15339795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-affinity chelator thiols for switchable and oriented immobilization of histidine-tagged proteins: a generic platform for protein chip technologies.
    Tinazli A; Tang J; Valiokas R; Picuric S; Lata S; Piehler J; Liedberg B; Tampé R
    Chemistry; 2005 Sep; 11(18):5249-59. PubMed ID: 15991207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered fusion molecules at chelator lipid interfaces imaged by reflection interference contrast microscopy (RICM).
    Gritsch S; Neumaier K; Schmitt L; Tampé R
    Biosens Bioelectron; 1995; 10(9-10):805-12. PubMed ID: 8652103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Covalent attachment of functionalized lipid bilayers to planar waveguides for measuring protein binding to biomimetic membranes.
    Heyse S; Vogel H; Sänger M; Sigrist H
    Protein Sci; 1995 Dec; 4(12):2532-44. PubMed ID: 8580844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional immobilization of a DNA-binding protein at a membrane interface via histidine tag and synthetic chelator lipids.
    Dietrich C; Boscheinen O; Scharf KD; Schmitt L; Tampé R
    Biochemistry; 1996 Jan; 35(4):1100-5. PubMed ID: 8573564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembled tethered bimolecular lipid membranes.
    Sinner EK; Ritz S; Naumann R; Schiller S; Knoll W
    Adv Clin Chem; 2009; 49():159-79. PubMed ID: 19947359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dense monolayers of metal-chelating ligands covalently attached to carbon electrodes electrochemically and their useful application in affinity binding of histidine-tagged proteins.
    Blankespoor R; Limoges B; Schöllhorn B; Syssa-Magalé JL; Yazidi D
    Langmuir; 2005 Apr; 21(8):3362-75. PubMed ID: 15807575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterization of tethered lipid assemblies for membrane protein reconstitution (Review).
    Veneziano R; Rossi C; Chenal A; Brenner C; Ladant D; Chopineau J
    Biointerphases; 2017 Sep; 12(4):04E301. PubMed ID: 28958150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and characterization of Ni-NTA-bearing microspheres.
    Lauer SA; Nolan JP
    Cytometry; 2002 Jul; 48(3):136-45. PubMed ID: 12116359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: silane-polyethyleneglycol-lipid as a cushion and covalent linker.
    Wagner ML; Tamm LK
    Biophys J; 2000 Sep; 79(3):1400-14. PubMed ID: 10969002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-chelating amino acids as building blocks for synthetic receptors sensing metal ions and histidine-tagged proteins.
    Hutschenreiter S; Neumann L; Rädler U; Schmitt L; Tampé R
    Chembiochem; 2003 Dec; 4(12):1340-4. PubMed ID: 14661277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pattern formation and molecular transport of histidine-tagged GFPs using supported lipid bilayers.
    Nakashima H; Furukawa K; Kashimura Y; Sumitomo K; Shinozaki Y; Torimitsu K
    Langmuir; 2010 Aug; 26(15):12716-21. PubMed ID: 20666418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A metal-chelating microscopy tip as a new toolbox for single-molecule experiments by atomic force microscopy.
    Schmitt L; Ludwig M; Gaub HE; Tampé R
    Biophys J; 2000 Jun; 78(6):3275-85. PubMed ID: 10828003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tethered bilayer lipid membranes (tBLMs): interest and applications for biological membrane investigations.
    Rebaud S; Maniti O; Girard-Egrot AP
    Biochimie; 2014 Dec; 107 Pt A():135-42. PubMed ID: 24998327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional tethered lipid bilayers.
    Knoll W; Frank CW; Heibel C; Naumann R; Offenhäusser A; Rühe J; Schmidt EK; Shen WW; Sinner A
    J Biotechnol; 2000 Sep; 74(3):137-58. PubMed ID: 11143794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential mechanisms for calcium-dependent protein/membrane association as evidenced from SPR-binding studies on supported biomimetic membranes.
    Rossi C; Homand J; Bauche C; Hamdi H; Ladant D; Chopineau J
    Biochemistry; 2003 Dec; 42(51):15273-83. PubMed ID: 14690437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional tethered bilayer lipid membranes on aluminum oxide.
    Roskamp RF; Vockenroth IK; Eisenmenger N; Braunagel J; Köper I
    Chemphyschem; 2008 Sep; 9(13):1920-4. PubMed ID: 18704903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the self-assembly of proteins onto gold nanoparticles and quantum dots driven by metal-histidine coordination.
    Aldeek F; Safi M; Zhan N; Palui G; Mattoussi H
    ACS Nano; 2013 Nov; 7(11):10197-210. PubMed ID: 24134196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A facile approach for assembling lipid bilayer membranes on template-stripped gold.
    Wang X; Shindel MM; Wang SW; Ragan R
    Langmuir; 2010 Dec; 26(23):18239-45. PubMed ID: 21050009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.