BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 11106760)

  • 1. Mechanism of membrane insertion of a multimeric beta-barrel protein: perfringolysin O creates a pore using ordered and coupled conformational changes.
    Heuck AP; Hotze EM; Tweten RK; Johnson AE
    Mol Cell; 2000 Nov; 6(5):1233-42. PubMed ID: 11106760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. R468A mutation in perfringolysin O destabilizes toxin structure and induces membrane fusion.
    Kulma M; Kacprzyk-Stokowiec A; Kwiatkowska K; Traczyk G; Sobota A; Dadlez M
    Biochim Biophys Acta Biomembr; 2017 Jun; 1859(6):1075-1088. PubMed ID: 28263714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin.
    Ramachandran R; Heuck AP; Tweten RK; Johnson AE
    Nat Struct Biol; 2002 Nov; 9(11):823-7. PubMed ID: 12368903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins.
    Shatursky O; Heuck AP; Shepard LA; Rossjohn J; Parker MW; Johnson AE; Tweten RK
    Cell; 1999 Oct; 99(3):293-9. PubMed ID: 10555145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vertical collapse of a cytolysin prepore moves its transmembrane beta-hairpins to the membrane.
    Czajkowsky DM; Hotze EM; Shao Z; Tweten RK
    EMBO J; 2004 Aug; 23(16):3206-15. PubMed ID: 15297878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assembly and topography of the prepore complex in cholesterol-dependent cytolysins.
    Heuck AP; Tweten RK; Johnson AE
    J Biol Chem; 2003 Aug; 278(33):31218-25. PubMed ID: 12777381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perfringolysin O structure and mechanism of pore formation as a paradigm for cholesterol-dependent cytolysins.
    Johnson BB; Heuck AP
    Subcell Biochem; 2014; 80():63-81. PubMed ID: 24798008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an alpha-helical to beta-sheet transition identified by fluorescence spectroscopy.
    Shepard LA; Heuck AP; Hamman BD; Rossjohn J; Parker MW; Ryan KR; Johnson AE; Tweten RK
    Biochemistry; 1998 Oct; 37(41):14563-74. PubMed ID: 9772185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crucial role of perfringolysin O D1 domain in orchestrating structural transitions leading to membrane-perforating pores: a hydrogen-deuterium exchange study.
    Kacprzyk-Stokowiec A; Kulma M; Traczyk G; Kwiatkowska K; Sobota A; Dadlez M
    J Biol Chem; 2014 Oct; 289(41):28738-52. PubMed ID: 25164812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cholesterol-dependent cytolysin family of gram-positive bacterial toxins.
    Heuck AP; Moe PC; Johnson BB
    Subcell Biochem; 2010; 51():551-77. PubMed ID: 20213558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of theta-toxin (perfringolysin O), a cholesterol-binding cytolysin, with liposomal membranes: change in the aromatic side chains upon binding and insertion.
    Nakamura M; Sekino N; Iwamoto M; Ohno-Iwashita Y
    Biochemistry; 1995 May; 34(19):6513-20. PubMed ID: 7756282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phospholipid hydrolysis caused by Clostridium perfringens α-toxin facilitates the targeting of perfringolysin O to membrane bilayers.
    Moe PC; Heuck AP
    Biochemistry; 2010 Nov; 49(44):9498-507. PubMed ID: 20886855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane-dependent conformational changes initiate cholesterol-dependent cytolysin oligomerization and intersubunit beta-strand alignment.
    Ramachandran R; Tweten RK; Johnson AE
    Nat Struct Mol Biol; 2004 Aug; 11(8):697-705. PubMed ID: 15235590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxin structure: part of a hole?
    Bayley H
    Curr Biol; 1997 Dec; 7(12):R763-7. PubMed ID: 9382829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanism of pore assembly for a cholesterol-dependent cytolysin: formation of a large prepore complex precedes the insertion of the transmembrane beta-hairpins.
    Shepard LA; Shatursky O; Johnson AE; Tweten RK
    Biochemistry; 2000 Aug; 39(33):10284-93. PubMed ID: 10956018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Cholesterol-dependent Cytolysin Membrane-binding Interface Discriminates Lipid Environments of Cholesterol to Support β-Barrel Pore Insertion.
    Farrand AJ; Hotze EM; Sato TK; Wade KR; Wimley WC; Johnson AE; Tweten RK
    J Biol Chem; 2015 Jul; 290(29):17733-17744. PubMed ID: 26032415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fine-tuning of the stability of β-strands by Y181 in perfringolysin O directs the prepore to pore transition.
    Kulma M; Kacprzyk-Stokowiec A; Traczyk G; Kwiatkowska K; Dadlez M
    Biochim Biophys Acta Biomembr; 2019 Jan; 1861(1):110-122. PubMed ID: 30463694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical characterization of Bacillus thuringiensis cytolytic toxins in association with a phospholipid bilayer.
    Du J; Knowles BH; Li J; Ellar DJ
    Biochem J; 1999 Feb; 338 ( Pt 1)(Pt 1):185-93. PubMed ID: 9931315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oligomerization and hemolytic properties of the C-terminal domain of pyolysin, a cholesterol-dependent cytolysin.
    Pokrajac L; Harris JR; Sarraf N; Palmer M
    Biochem Cell Biol; 2013 Apr; 91(2):59-66. PubMed ID: 23527633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of natural lipid asymmetry upon the conformation of a membrane-inserted protein (perfringolysin O).
    Lin Q; London E
    J Biol Chem; 2014 Feb; 289(9):5467-78. PubMed ID: 24398685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.