These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 11108353)

  • 1. An acoustic/thermal model for self-heating in PMN sonar projectors.
    Shankar N; Hom CL
    J Acoust Soc Am; 2000 Nov; 108(5 Pt 1):2151-8. PubMed ID: 11108353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal model for piezoelectric transducers (L).
    Butler JL; Butler AL; Butler SC
    J Acoust Soc Am; 2012 Oct; 132(4):2161-4. PubMed ID: 23039410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a thermal test object for the measurement of ultrasound intracavity transducer self-heating.
    Killingback AL; Newey VR; El-Brawany MA; Nassiri DK
    Ultrasound Med Biol; 2008 Dec; 34(12):2035-42. PubMed ID: 18723269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of a segmented transducer for rib sparing in HIFU treatments.
    Civale J; Clarke R; Rivens I; ter Haar G
    Ultrasound Med Biol; 2006 Nov; 32(11):1753-61. PubMed ID: 17112961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic Power Measurement and Thermal Bioeffect Evaluation of Therapeutic Langevin Transducers.
    Kim J; Lee J
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical and thermal transitions in morphotropic PZN-pT and PMN-PT single crystals and their implication for sound projectors.
    Amin A; McLaughlin E; Robinson H; Ewart L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jun; 54(6):1090-5. PubMed ID: 17571807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Performance Ultrasound Needle Transducer Based on Modified PMN-PT Ceramic With Ultrahigh Clamped Dielectric Permittivity.
    Zhang Z; Li F; Chen R; Zhang T; Cao X; Zhang S; Shrout TR; Zheng H; Shung KK; Humayun MS; Qiu W; Zhou Q
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Feb; 65(2):223-230. PubMed ID: 29389654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial and temporal thermal analysis of acousto-optic deflectors using finite element analysis model.
    Jiang R; Zhou Z; Lv X; Zeng S; Huang Z; Zhou H
    Ultrasonics; 2012 Jul; 52(5):643-9. PubMed ID: 22316528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic and Thermal Characterization of Therapeutic Ultrasonic Langevin Transducers under Continuous- and Pulsed Wave Excitations.
    Kim J; Lee J
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-air and underwater performance and finite element analysis of a flextensional device having electrostrictive poly(vinylidene fluoride-trifluoroethylene) polymers as the active driving element.
    Xia F; Cheng ZY; Zhang Q
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Jul; 50(7):932-40. PubMed ID: 12894926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New Sm-PMN-PT Ceramic-Based 2-D Array for Low-Intensity Ultrasound Therapy Application.
    Zhang Z; Su M; Li F; Liu R; Cai R; Li G; Jiang Q; Zhong H; Shrout TR; Zhang S; Zheng H; Qiu W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Oct; 67(10):2085-2094. PubMed ID: 32149634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnesium Alloy Matching Layer for PMN-PT Single Crystal Transducer Applications.
    Guo F; Wang Y; Huang Z; Qiu W; Zhang Z; Wang Z; Dong J; Yang B; Cao W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Oct; 65(10):1865-1872. PubMed ID: 30072319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, production and testing of PMN-PT electrostrictive transducers.
    Coutte J; Dubus B; Debus JC; Granger C; Jones D
    Ultrasonics; 2002 May; 40(1-8):883-8. PubMed ID: 12160063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal safety of vibro-acoustography using a confocal transducer.
    Chen S; Aquino W; Alizad A; Urban MW; Kinnick R; Greenleaf JF; Fatemi M
    Ultrasound Med Biol; 2010 Feb; 36(2):343-9. PubMed ID: 20113864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermoacoustic power conversion using a piezoelectric transducer.
    Jensen C; Raspet R
    J Acoust Soc Am; 2010 Jul; 128(1):98-103. PubMed ID: 20649205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Air-cooling of direct-coupled ultrasound applicators for interstitial hyperthermia and thermal coagulation.
    Deardorff DL; Diederich CJ; Nau WH
    Med Phys; 1998 Dec; 25(12):2400-9. PubMed ID: 9874834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface heating by transvaginal transducers.
    Calvert J; Duck F; Clift S; Azaime H
    Ultrasound Obstet Gynecol; 2007 Apr; 29(4):427-32. PubMed ID: 17390331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Simulation study on acoustic source reconstruction of magneto-acoustic tomography with magnetic induction (MAT-MI) based on transducer].
    Wang S; Cui D; Wu Y; You M; Cao W; Guo Y; Jiao Q
    Zhongguo Yi Liao Qi Xie Za Zhi; 2015 Jan; 39(1):13-5, 24. PubMed ID: 26027286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental studies of the thermal effects associated with radiation force imaging of soft tissue.
    Palmeri ML; Frinkley KD; Nightingale KR
    Ultrason Imaging; 2004 Apr; 26(2):100-14. PubMed ID: 15344414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing the Heat-Dissipation Efficiency in Ultrasonic Transducers via Embedding Vertically Oriented Graphene-Based Porcelain Radiators.
    Shan J; Wang S; Zhou F; Cui L; Zhang Y; Liu Z
    Nano Lett; 2020 Jul; 20(7):5097-5105. PubMed ID: 32492341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.