These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 11108378)

  • 1. Speech recognition by normal-hearing and cochlear implant listeners as a function of intensity resolution.
    Loizou PC; Dorman M; Poroy O; Spahr T
    J Acoust Soc Am; 2000 Nov; 108(5 Pt 1):2377-87. PubMed ID: 11108378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimum spectral contrast needed for vowel identification by normal hearing and cochlear implant listeners.
    Loizou PC; Poroy O
    J Acoust Soc Am; 2001 Sep; 110(3 Pt 1):1619-27. PubMed ID: 11572371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the number of channels needed to understand speech.
    Loizou PC; Dorman M; Tu Z
    J Acoust Soc Am; 1999 Oct; 106(4 Pt 1):2097-103. PubMed ID: 10530032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognition of spectrally asynchronous speech by normal-hearing listeners and Nucleus-22 cochlear implant users.
    Fu QJ; Galvin JJ
    J Acoust Soc Am; 2001 Mar; 109(3):1166-72. PubMed ID: 11303930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of noise and spectral resolution on vowel and consonant recognition: acoustic and electric hearing.
    Fu QJ; Shannon RV; Wang X
    J Acoust Soc Am; 1998 Dec; 104(6):3586-96. PubMed ID: 9857517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants.
    Friesen LM; Shannon RV; Baskent D; Wang X
    J Acoust Soc Am; 2001 Aug; 110(2):1150-63. PubMed ID: 11519582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speech recognition in normal hearing and sensorineural hearing loss as a function of the number of spectral channels.
    Başkent D
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2908-25. PubMed ID: 17139748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limiting spectral resolution in speech for listeners with sensorineural hearing loss.
    Turner CW; Chi SL; Flock S
    J Speech Lang Hear Res; 1999 Aug; 42(4):773-84. PubMed ID: 10450899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of dynamic range and amplitude mapping on phoneme recognition in Nucleus-22 cochlear implant users.
    Fu QJ; Shannon RV
    Ear Hear; 2000 Jun; 21(3):227-35. PubMed ID: 10890731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplitude mapping and phoneme recognition in cochlear implant listeners.
    Zeng FG; Galvin JJ
    Ear Hear; 1999 Feb; 20(1):60-74. PubMed ID: 10037066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The identification of consonants and vowels by cochlear implant patients using a 6-channel continuous interleaved sampling processor and by normal-hearing subjects using simulations of processors with two to nine channels.
    Dorman MF; Loizou PC
    Ear Hear; 1998 Apr; 19(2):162-6. PubMed ID: 9562538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between unsupervised learning and the degree of spectral mismatch on short-term perceptual adaptation to spectrally shifted speech.
    Li T; Galvin JJ; Fu QJ
    Ear Hear; 2009 Apr; 30(2):238-49. PubMed ID: 19194293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The recognition of sentences in noise by normal-hearing listeners using simulations of cochlear-implant signal processors with 6-20 channels.
    Dorman MF; Loizou PC; Fitzke J; Tu Z
    J Acoust Soc Am; 1998 Dec; 104(6):3583-5. PubMed ID: 9857516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of vowel context on the recognition of initial and medial consonants by cochlear implant users.
    Donaldson GS; Kreft HA
    Ear Hear; 2006 Dec; 27(6):658-77. PubMed ID: 17086077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The identification of speech in noise by cochlear implant patients and normal-hearing listeners using 6-channel signal processors.
    Dorman MF; Loizou PC; Fitzke J
    Ear Hear; 1998 Dec; 19(6):481-4. PubMed ID: 9867296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of the speech understanding provided by acoustic models of fixed-channel and channel-picking signal processors for cochlear implants.
    Dorman MF; Loizou PC; Spahr AJ; Maloff E
    J Speech Lang Hear Res; 2002 Aug; 45(4):783-8. PubMed ID: 12199407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral and temporal cues in cochlear implant speech perception.
    Nie K; Barco A; Zeng FG
    Ear Hear; 2006 Apr; 27(2):208-17. PubMed ID: 16518146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of a single-channel wide dynamic range compression circuit on perception of stop consonant place of articulation.
    Hedrick MS; Rice T
    J Speech Lang Hear Res; 2000 Oct; 43(5):1174-84. PubMed ID: 11063239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of the number of channels and speech-to-noise ratio on rate of connected discourse tracking through a simulated cochlear implant speech processor.
    Faulkner A; Rosen S; Wilkinson L
    Ear Hear; 2001 Oct; 22(5):431-8. PubMed ID: 11605950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of training rate on recognition of spectrally shifted speech.
    Nogaki G; Fu QJ; Galvin JJ
    Ear Hear; 2007 Apr; 28(2):132-40. PubMed ID: 17496666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.