BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 11108952)

  • 1. Fibrillin-1, a calcium binding protein of extracellular matrix.
    Handford PA
    Biochim Biophys Acta; 2000 Dec; 1498(2-3):84-90. PubMed ID: 11108952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular effects of calcium binding mutations in Marfan syndrome depend on domain context.
    McGettrick AJ; Knott V; Willis A; Handford PA
    Hum Mol Genet; 2000 Aug; 9(13):1987-94. PubMed ID: 10942427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution structure and dynamics of a calcium binding epidermal growth factor-like domain pair from the neonatal region of human fibrillin-1.
    Smallridge RS; Whiteman P; Werner JM; Campbell ID; Handford PA; Downing AK
    J Biol Chem; 2003 Apr; 278(14):12199-206. PubMed ID: 12511552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium binding, hydroxylation, and glycosylation of the precursor epidermal growth factor-like domains of fibrillin-1, the Marfan gene protein.
    Glanville RW; Qian RQ; McClure DW; Maslen CL
    J Biol Chem; 1994 Oct; 269(43):26630-4. PubMed ID: 7929395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EGF-like domain calcium affinity modulated by N-terminal domain linkage in human fibrillin-1.
    Smallridge RS; Whiteman P; Doering K; Handford PA; Downing AK
    J Mol Biol; 1999 Feb; 286(3):661-8. PubMed ID: 10024441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal ion dependency of microfibrils supports a rod-like conformation for fibrillin-1 calcium-binding epidermal growth factor-like domains.
    Cardy CM; Handford PA
    J Mol Biol; 1998 Mar; 276(5):855-60. PubMed ID: 9566191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the N2144S mutation on backbone dynamics of a TB-cbEGF domain pair from human fibrillin-1.
    Yuan X; Werner JM; Lack J; Knott V; Handford PA; Campbell ID; Downing AK
    J Mol Biol; 2002 Feb; 316(1):113-25. PubMed ID: 11829507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The calcium binding properties and molecular organization of epidermal growth factor-like domains in human fibrillin-1.
    Handford P; Downing AK; Rao Z; Hewett DR; Sykes BC; Kielty CM
    J Biol Chem; 1995 Mar; 270(12):6751-6. PubMed ID: 7896820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered mutations in fibrillin-1 leading to Marfan syndrome act at the protein, cellular and organismal levels.
    Zeyer KA; Reinhardt DP
    Mutat Res Rev Mutat Res; 2015; 765():7-18. PubMed ID: 26281765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defective calcium binding to fibrillin-1: consequence of an N2144S change for fibrillin-1 structure and function.
    Kettle S; Yuan X; Grundy G; Knott V; Downing AK; Handford PA
    J Mol Biol; 1999 Jan; 285(3):1277-87. PubMed ID: 9887276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular and molecular studies of Marfan syndrome mutations identify co-operative protein folding in the cbEGF12-13 region of fibrillin-1.
    Whiteman P; Willis AC; Warner A; Brown J; Redfield C; Handford PA
    Hum Mol Genet; 2007 Apr; 16(8):907-18. PubMed ID: 17324963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A G1127S change in calcium-binding epidermal growth factor-like domain 13 of human fibrillin-1 causes short range conformational effects.
    Whiteman P; Smallridge RS; Knott V; Cordle JJ; Downing AK; Handford PA
    J Biol Chem; 2001 May; 276(20):17156-62. PubMed ID: 11278305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR analysis of cbEGF domains gives new insights into the structural consequences of a P1148A substitution in fibrillin-1.
    Whiteman P; Downing AK; Handford PA
    Protein Eng; 1998 Nov; 11(11):957-9. PubMed ID: 9876915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfibrils: a cornerstone of extracellular matrix and a key to understand Marfan syndrome.
    Bonetti MI
    Ital J Anat Embryol; 2009; 114(4):201-24. PubMed ID: 20578676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fibrillin-rich microfibrils: elastic biopolymers of the extracellular matrix.
    Kielty CM; Wess TJ; Haston L; Ashworth JL; Sherratt MJ; Shuttleworth CA
    J Muscle Res Cell Motil; 2002; 23(5-6):581-96. PubMed ID: 12785107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights into the structure, assembly and biological roles of 10-12 nm connective tissue microfibrils from fibrillin-1 studies.
    Jensen SA; Handford PA
    Biochem J; 2016 Apr; 473(7):827-38. PubMed ID: 27026396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibrillin: from microfibril assembly to biomechanical function.
    Kielty CM; Baldock C; Lee D; Rock MJ; Ashworth JL; Shuttleworth CA
    Philos Trans R Soc Lond B Biol Sci; 2002 Feb; 357(1418):207-17. PubMed ID: 11911778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Backbone dynamics of a cbEGF domain pair in the presence of calcium.
    Werner JM; Knott V; Handford PA; Campbell ID; Downing AK
    J Mol Biol; 2000 Mar; 296(4):1065-78. PubMed ID: 10686104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fibrillin domain folding and calcium binding: significance to Marfan syndrome.
    Wu YS; Bevilacqua VL; Berg JM
    Chem Biol; 1995 Feb; 2(2):91-7. PubMed ID: 9383409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fibrillin-rich microfibrils: Structural determinants of morphogenetic and homeostatic events.
    Ramirez F; Dietz HC
    J Cell Physiol; 2007 Nov; 213(2):326-30. PubMed ID: 17708531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.