BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 11110806)

  • 21. Characterization of calcium currents in functionally mature mouse spinal motoneurons.
    Carlin KP; Jiang Z; Brownstone RM
    Eur J Neurosci; 2000 May; 12(5):1624-34. PubMed ID: 10792440
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Atrial natriuretic factor (ANF) effects on L-, N-, and P/Q-type voltage-operated calcium channels.
    Rodríguez Fermepín M; Alvarez Maubecín V; Zarrabeitía V; Bianciotti LG; Vatta MS; Fernández BE
    Cell Mol Neurobiol; 2002 Dec; 22(5-6):771-81. PubMed ID: 12585694
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modulation of calcium currents and membrane properties by substance P in the lamprey spinal cord.
    Pérez CT; Hill RH; Grillner S
    J Neurophysiol; 2013 Jul; 110(2):286-96. PubMed ID: 23615543
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of various K+ channel blockers on spontaneous glycine release at rat spinal neurons.
    Shoudai K; Nonaka K; Maeda M; Wang ZM; Jeong HJ; Higashi H; Murayama N; Akaike N
    Brain Res; 2007 Jul; 1157():11-22. PubMed ID: 17555723
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Voltage-dependent calcium channels in the corpora allata of the adult male loreyi leafworm, Mythimna loreyi.
    Hsieh YC; Yang EC; Hsu EL; Chow YS; Kou R
    Insect Biochem Mol Biol; 2002 May; 32(5):547-57. PubMed ID: 11891131
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heterogeneous calcium currents and transmitter release in cultured mouse spinal cord and dorsal root ganglion neurons.
    Yu C; Lin PX; Fitzgerald S; Nelson P
    J Neurophysiol; 1992 Mar; 67(3):561-75. PubMed ID: 1374458
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling of substance P and 5-HT induced synaptic plasticity in the lamprey spinal CPG: consequences for network pattern generation.
    Kozlov A; Kotaleski JH; Aurell E; Grillner S; Lansner A
    J Comput Neurosci; 2001; 11(2):183-200. PubMed ID: 11717534
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An experimentally constrained computational model of NMDA oscillations in lamprey CPG neurons.
    Huss M; Wang D; Trané C; Wikström M; Hellgren Kotaleski J
    J Comput Neurosci; 2008 Aug; 25(1):108-21. PubMed ID: 18080179
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Endogenous release of 5-HT modulates the plateau phase of NMDA-induced membrane potential oscillations in lamprey spinal neurons.
    Wang D; Grillner S; Wallén P
    J Neurophysiol; 2014 Jul; 112(1):30-8. PubMed ID: 24740857
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The spinal GABAergic system is a strong modulator of burst frequency in the lamprey locomotor network.
    Schmitt DE; Hill RH; Grillner S
    J Neurophysiol; 2004 Oct; 92(4):2357-67. PubMed ID: 15190090
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of voltage-dependent calcium channel subtypes in spinal long-term potentiation of C-fiber-evoked field potentials.
    Ohnami S; Tanabe M; Shinohara S; Takasu K; Kato A; Ono H
    Pain; 2011 Mar; 152(3):623-631. PubMed ID: 21211907
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dopaminergic modulation of spinal neurons and synaptic potentials in the lamprey spinal cord.
    Kemnitz CP
    J Neurophysiol; 1997 Jan; 77(1):289-98. PubMed ID: 9120571
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Voltage-dependent calcium currents in trigeminal motoneurons of early postnatal rats: modulation by 5-HT receptors.
    Hsiao CF; Wu N; Chandler SH
    J Neurophysiol; 2005 Sep; 94(3):2063-72. PubMed ID: 15972834
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential recruitment of N-, P- and Q-type voltage-operated calcium channels in striatal dopamine release evoked by 'regular' and 'burst' firing.
    Phillips PE; Stamford JA
    Brain Res; 2000 Nov; 884(1--2):139-46. PubMed ID: 11082495
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of L-type calcium channels and a nifedipine-sensitive motor activity in the postnatal mouse spinal cord.
    Jiang Z; Rempel J; Li J; Sawchuk MA; Carlin KP; Brownstone RM
    Eur J Neurosci; 1999 Oct; 11(10):3481-7. PubMed ID: 10564356
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The spino-reticulo-spinal loop can slow down the NMDA-activated spinal locomotor network in lamprey.
    Vinay L; Grillner S
    Neuroreport; 1993 Jun; 4(6):609-12. PubMed ID: 8394151
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neurotensin and substance P inhibit low- and high-voltage-activated Ca2+ channels in cultured newborn rat nucleus basalis neurons.
    Margeta-Mitrovic M; Grigg JJ; Koyano K; Nakajima Y; Nakajima S
    J Neurophysiol; 1997 Sep; 78(3):1341-52. PubMed ID: 9310425
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Opposite Roles in Short-Term Plasticity for N-Type and P/Q-Type Voltage-Dependent Calcium Channels in GABAergic Neuronal Connections in the Rat Cerebral Cortex.
    Yamamoto K; Kobayashi M
    J Neurosci; 2018 Nov; 38(46):9814-9828. PubMed ID: 30249804
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 5-HT and dopamine modulates CaV1.3 calcium channels involved in postinhibitory rebound in the spinal network for locomotion in lamprey.
    Wang D; Grillner S; Wallén P
    J Neurophysiol; 2011 Mar; 105(3):1212-24. PubMed ID: 21228305
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Action potential-evoked Ca2+ signals and calcium channels in axons of developing rat cerebellar interneurones.
    Forti L; Pouzat C; Llano I
    J Physiol; 2000 Aug; 527 Pt 1(Pt 1):33-48. PubMed ID: 10944168
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.