BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 11110957)

  • 21. Measurements of intracranial pressure and compliance index using 1.5-T clinical MRI machine.
    Atsumi H; Matsumae M; Hirayama A; Kuroda K
    Tokai J Exp Clin Med; 2014 Mar; 39(1):34-43. PubMed ID: 24733596
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimation of cerebrospinal fluid compensation parameters in hydrocephalus using short-lasting constant rate lumbar infusion tests.
    Piechnik SK; Ferreira VM; Cieslicki K
    Br J Neurosurg; 2012 Feb; 26(1):38-44. PubMed ID: 21899380
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lumbar elastance and resistance to CSF outflow correlated to patency of the cranial subarachnoid space and clinical outcome of endoscopic third ventriculostomy in obstructive hydrocephalus.
    Bech-Azeddine R; Nielsen OA; Løgager VB; Juhler M
    Minim Invasive Neurosurg; 2007 Aug; 50(4):189-94. PubMed ID: 17948176
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reference values for CSF outflow resistance and intracranial pressure in healthy elderly.
    Malm J; Jacobsson J; Birgander R; Eklund A
    Neurology; 2011 Mar; 76(10):903-9. PubMed ID: 21383326
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative analysis of CSF flow dynamics using MRI in normal pressure hydrocephalus.
    Mase M; Yamada K; Banno T; Miyachi T; Ohara S; Matsumoto T
    Acta Neurochir Suppl; 1998; 71():350-3. PubMed ID: 9779227
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantifying the effect of posture on intracranial physiology in humans by MRI flow studies.
    Alperin N; Lee SH; Sivaramakrishnan A; Hushek SG
    J Magn Reson Imaging; 2005 Nov; 22(5):591-6. PubMed ID: 16217773
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phase contrast MRI quantification of pulsatile volumes of brain arteries, veins, and cerebrospinal fluids compartments: repeatability and physiological interactions.
    Wåhlin A; Ambarki K; Hauksson J; Birgander R; Malm J; Eklund A
    J Magn Reson Imaging; 2012 May; 35(5):1055-62. PubMed ID: 22170792
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measuring elevated intracranial pressure through noninvasive methods: a review of the literature.
    Kristiansson H; Nissborg E; Bartek J; Andresen M; Reinstrup P; Romner B
    J Neurosurg Anesthesiol; 2013 Oct; 25(4):372-85. PubMed ID: 23715045
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental evaluation of the Spiegelberg intracranial pressure and intracranial compliance monitor. Technical note.
    Yau YH; Piper IR; Clutton RE; Whittle IR
    J Neurosurg; 2000 Dec; 93(6):1072-7. PubMed ID: 11117854
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Clinical use of cerebral elastance and intracranial dynamics measurements].
    Stocchetti N; Mattioli C; Mainini P; Furlan A; Paparella A; Zuccoli P
    Minerva Anestesiol; 1993; 59(1-2):1-9. PubMed ID: 8474666
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Noninvasive MRI assessment of intracranial compliance in idiopathic normal pressure hydrocephalus.
    Miyati T; Mase M; Kasai H; Hara M; Yamada K; Shibamoto Y; Soellinger M; Baltes C; Luechinger R
    J Magn Reson Imaging; 2007 Aug; 26(2):274-8. PubMed ID: 17610284
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Volumetric flow rates in the portal venous system: measurement with cine phase-contrast MR imaging.
    Burkart DJ; Johnson CD; Morton MJ; Wolf RL; Ehman RL
    AJR Am J Roentgenol; 1993 May; 160(5):1113-8. PubMed ID: 8470589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How to measure cerebrospinal fluid pressure invasively and noninvasively.
    Silverman CA; Linstrom CJ
    J Glaucoma; 2013; 22 Suppl 5():S26-8. PubMed ID: 23733122
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automated intracranial pressure-controlled cerebrospinal fluid external drainage with LiquoGuard.
    Linsler S; Schmidtke M; Steudel WI; Kiefer M; Oertel J
    Acta Neurochir (Wien); 2013 Aug; 155(8):1589-94; discussion 1594-5. PubMed ID: 23188469
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Magnetic resonance imaging for quantitative flow measurement in infants with hydrocephalus: a prospective study.
    Leliefeld PH; Gooskens RH; Vincken KL; Ramos LM; van der Grond J; Tulleken CA; Kappelle LJ; Hanlo PW
    J Neurosurg Pediatr; 2008 Sep; 2(3):163-70. PubMed ID: 18759596
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hypocapnia and intracranial volume-pressure relationship. A clinical and experimental study.
    Rowed DW; Leech PJ; Reilly PL; Miller JD
    Arch Neurol; 1975 Jun; 32(6):369-73. PubMed ID: 1131071
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cardiac-gated intracranial elastance in a swine model of raised intracranial pressure: a novel method to assess intracranial pressure-volume dynamics.
    Doron O; Barnea O; Stocchetti N; Or T; Nossek E; Rosenthal G
    J Neurosurg; 2020 Jun; 134(5):1650-1657. PubMed ID: 32503002
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Noninvasive intracranial pressure estimation by orbital subarachnoid space measurement: the Beijing Intracranial and Intraocular Pressure (iCOP) study.
    Xie X; Zhang X; Fu J; Wang H; Jonas JB; Peng X; Tian G; Xian J; Ritch R; Li L; Kang Z; Zhang S; Yang D; Wang N;
    Crit Care; 2013 Jul; 17(4):R162. PubMed ID: 23883736
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes in intracranial pulse pressure amplitudes after shunt implantation and adjustment of shunt valve opening pressure in normal pressure hydrocephalus.
    Eide PK; Sorteberg W
    Acta Neurochir (Wien); 2008 Nov; 150(11):1141-7; discussion 1147. PubMed ID: 18936877
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ICP curve morphology and intracranial flow-volume changes: a simultaneous ICP and cine phase contrast MRI study in humans.
    Unnerbäck M; Ottesen JT; Reinstrup P
    Acta Neurochir (Wien); 2018 Feb; 160(2):219-224. PubMed ID: 29273948
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.