BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 11112372)

  • 1. Toxicity of chitinase-producing Bacillus thuringiensis ssp. kurstaki HD-1 (G) toward Plutella xylostella.
    Wiwat C; Thaithanun S; Pantuwatana S; Bhumiratana A
    J Invertebr Pathol; 2000 Nov; 76(4):270-7. PubMed ID: 11112372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a recombinant strain of Bacillus thuringiensis subsp. kurstaki HD-73 that produces the endochitinase ChiA74.
    Casique-Arroyo G; Bideshi D; Salcedo-Hernández R; Barboza-Corona JE
    Antonie Van Leeuwenhoek; 2007 Jul; 92(1):1-9. PubMed ID: 17136568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of chitinase-encoding genes in Bacillus thuringiensis and toxicity of engineered B. thuringiensis subsp. aizawai toward Lymantria dispar larvae.
    Lertcanawanichakul M; Wiwat C; Bhumiratana A; Dean DH
    Curr Microbiol; 2004 Mar; 48(3):175-81. PubMed ID: 15057461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induced production of chitinase to enhance entomotoxicity of Bacillus thuringiensis employing starch industry wastewater as a substrate.
    Vu KD; Yan S; Tyagi RD; Valéro JR; Surampalli RY
    Bioresour Technol; 2009 Nov; 100(21):5260-9. PubMed ID: 19564105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Larval susceptibility of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), to Bacillus thuringiensis H serovars isolated in Japan.
    Higuchi K; Saitoh H; Mizuki E; Ichimatsu T; Ohba M
    Microbiol Res; 2000 Apr; 155(1):23-9. PubMed ID: 10830896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergism between Bacillus thuringiensis Spores and Toxins against Resistant and Susceptible Diamondback Moths (Plutella xylostella).
    Liu YB; Tabashnik BE; Moar WJ; Smith RA
    Appl Environ Microbiol; 1998 Apr; 64(4):1385-9. PubMed ID: 16349543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the insecticidal activity of Bacillus thuringiensis subsp. aizawai against Spodoptera exigua by chromosomal expression of a chitinase gene.
    Thamthiankul S; Moar WJ; Miller ME; Panbangred W
    Appl Microbiol Biotechnol; 2004 Aug; 65(2):183-92. PubMed ID: 15107949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential toxicity of Bacillus thuringiensis strains and their crystal toxins against high-altitude Himalayan populations of diamondback moth, Plutella xylostella L.
    Mohan M; Sushil SN; Selvakumar G; Bhatt JC; Gujar GT; Gupta HS
    Pest Manag Sci; 2009 Jan; 65(1):27-33. PubMed ID: 18785222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chitinolytic activities in Bacillus thuringiensis and their synergistic effects on larvicidal activity.
    Liu M; Cai QX; Liu HZ; Zhang BH; Yan JP; Yuan ZM
    J Appl Microbiol; 2002; 93(3):374-9. PubMed ID: 12174034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying the reproduction of Bacillus thuringiensis HD1 in cadavers and live larvae of Plutella xylostella.
    Raymond B; Elliot SL; Ellis RJ
    J Invertebr Pathol; 2008 Jul; 98(3):307-13. PubMed ID: 18336832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of chitinase-encoding genes from Aeromonas hydrophila and Pseudomonas maltophilia in Bacillus thuringiensis subsp. israelensis.
    Wiwat C; Lertcanawanichakul M; Siwayapram P; Pantuwatana S; Bhumiratana A
    Gene; 1996 Nov; 179(1):119-26. PubMed ID: 8955637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperproduction of chitinase influences crystal toxin synthesis and sporulation of Bacillus thuringiensis.
    Barboza-Corona JE; Ortiz-Rodríguez T; de la Fuente-Salcido N; Bideshi DK; Ibarra JE; Salcedo-Hernández R
    Antonie Van Leeuwenhoek; 2009 Jun; 96(1):31-42. PubMed ID: 19337851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression of diamondback moth (Lepidoptera: Plutellidae) with an entomopathogenic nematode (Rhabditida: Steinernematidae) and Bacillus thuringiensis Berliner.
    Baur ME; Kaya HK; Tabashnik BE; Chilcutt CF
    J Econ Entomol; 1998 Oct; 91(5):1089-95. PubMed ID: 9805498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of a strain of Bacillus thuringiensis ssp. kurstaki containing a new delta-endotoxin gene.
    Li MS; Je YH; Lee IH; Chang JH; Roh JY; Kim HS; Oh HW; Boo KS
    Curr Microbiol; 2002 Oct; 45(4):299-302. PubMed ID: 12192530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potentiation of insecticidal activity of Bacillus thuringiensis subsp. kurstaki HD-1 by proteinase inhibitors in the American bollworm, Helicoverpa armigera (Hübner).
    Gujar T; Kalia V; Kumari A; Prasad TV
    Indian J Exp Biol; 2004 Feb; 42(2):157-63. PubMed ID: 15282948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resistance to Bacillus thuringiensis by the Indian meal moth, Plodia interpunctella: comparison of midgut proteinases from susceptible and resistant larvae.
    Johnson DE; Brookhart GL; Kramer KJ; Barnett BD; McGaughey WH
    J Invertebr Pathol; 1990 Mar; 55(2):235-44. PubMed ID: 2181026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Change in a Single Midgut Receptor in the Diamondback Moth (Plutella xylostella) Is Only in Part Responsible for Field Resistance to Bacillus thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai.
    Wright DJ; Iqbal M; Granero F; Ferre J
    Appl Environ Microbiol; 1997 May; 63(5):1814-9. PubMed ID: 16535597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Chitinase of Bacillus thuringiensis].
    Chigaleĭchik AG
    Mikrobiologiia; 1976; 45(6):966-72. PubMed ID: 13274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacillus thuringiensis subsp. kurstaki HD1 as a factory to synthesize alkali-labile ChiA74∆sp chitinase inclusions, Cry crystals and spores for applied use.
    Barboza-Corona JE; Delgadillo-Ángeles JL; Castañeda-Ramírez JC; Barboza-Pérez UE; Casados-Vázquez LE; Bideshi DK; del Rincón-Castro MC
    Microb Cell Fact; 2014 Jan; 13():15. PubMed ID: 24460864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of alternative Plutella xylostella control by two Isaria fumosorosea conidial formulations - oil-based formulation and wettable powder - combined with Bacillus thuringiensis.
    Nian XG; He YR; Lu LH; Zhao R
    Pest Manag Sci; 2015 Dec; 71(12):1675-84. PubMed ID: 25641869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.