These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
61 related articles for article (PubMed ID: 11112446)
1. Mutagenesis studies on the iron binding ligands of clavaminic acid synthase. Doan LX; Hassan A; Lipscomb SJ; Dhanda A; Zhang Z; Schofield CJ Biochem Biophys Res Commun; 2000 Dec; 279(1):240-4. PubMed ID: 11112446 [TBL] [Abstract][Full Text] [Related]
2. Site-directed mutagenesis of residues in a conserved region of bovine aspartyl (asparaginyl) beta-hydroxylase: evidence that histidine 675 has a role in binding Fe2+. McGinnis K; Ku GM; VanDusen WJ; Fu J; Garsky V; Stern AM; Friedman PA Biochemistry; 1996 Apr; 35(13):3957-62. PubMed ID: 8672427 [TBL] [Abstract][Full Text] [Related]
3. Site-directed mutagenesis and biochemical analysis of the endogenous ligands in the ferrous active site of clavaminate synthase. The His-3 variant of the 2-His-1-carboxylate model. Khaleeli N; Busby RW; Townsend CA Biochemistry; 2000 Jul; 39(29):8666-73. PubMed ID: 10913275 [TBL] [Abstract][Full Text] [Related]
4. Site-directed mutagenesis studies on a putative fifth iron ligand of mouse 8S-lipoxygenase: retention of catalytic activity on mutation of serine-558 to asparagine, histidine, or alanine. Jisaka M; Boeglin WE; Kim RB; Brash AR Arch Biochem Biophys; 2001 Feb; 386(2):136-42. PubMed ID: 11368335 [TBL] [Abstract][Full Text] [Related]
5. Structural and functional comparison of 2-His-1-carboxylate and 3-His metallocentres in non-haem iron(II)-dependent enzymes. Leitgeb S; Nidetzky B Biochem Soc Trans; 2008 Dec; 36(Pt 6):1180-6. PubMed ID: 19021520 [TBL] [Abstract][Full Text] [Related]
6. Identification of the five essential histidine residues for peptidylglycine monooxygenase. Yonekura H; Anzai T; Kato I; Furuya Y; Shizuta S; Takasawa S; Okamoto H Biochem Biophys Res Commun; 1996 Jan; 218(2):495-9. PubMed ID: 8561784 [TBL] [Abstract][Full Text] [Related]
7. One motif--many different reactions. Que L Nat Struct Biol; 2000 Mar; 7(3):182-4. PubMed ID: 10700270 [No Abstract] [Full Text] [Related]
8. Histidine ligand protonation and redox potential in the rieske dioxygenases: role of a conserved aspartate in anthranilate 1,2-dioxygenase. Beharry ZM; Eby DM; Coulter ED; Viswanathan R; Neidle EL; Phillips RS; Kurtz DM Biochemistry; 2003 Nov; 42(46):13625-36. PubMed ID: 14622009 [TBL] [Abstract][Full Text] [Related]
9. The catalytic role of the copper ligand H172 of peptidylglycine alpha-hydroxylating monooxygenase: a kinetic study of the H172A mutant. Evans JP; Blackburn NJ; Klinman JP Biochemistry; 2006 Dec; 45(51):15419-29. PubMed ID: 17176064 [TBL] [Abstract][Full Text] [Related]
10. Biochemical characterization and mutational analysis of the mononuclear non-haem Fe2+ site in Dke1, a cupin-type dioxygenase from Acinetobacter johnsonii. Leitgeb S; Straganz GD; Nidetzky B Biochem J; 2009 Mar; 418(2):403-11. PubMed ID: 18973472 [TBL] [Abstract][Full Text] [Related]
11. The iron-sulfur center of biotin synthase: site-directed mutants. Hewitson KS; Ollagnier-de Choudens S; Sanakis Y; Shaw NM; Baldwin JE; Münck E; Roach PL; Fontecave M J Biol Inorg Chem; 2002 Jan; 7(1-2):83-93. PubMed ID: 11862544 [TBL] [Abstract][Full Text] [Related]
12. The conserved methionine residue of the metzincins: a site-directed mutagenesis study. Hege T; Baumann U J Mol Biol; 2001 Nov; 314(2):181-6. PubMed ID: 11718552 [TBL] [Abstract][Full Text] [Related]
13. Acid-base catalysis in the extradiol catechol dioxygenase reaction mechanism: site-directed mutagenesis of His-115 and His-179 in Escherichia coli 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB). Mendel S; Arndt A; Bugg TD Biochemistry; 2004 Oct; 43(42):13390-6. PubMed ID: 15491145 [TBL] [Abstract][Full Text] [Related]
14. Histidines 345 and 378 of Bacillus stearothermophilus leucine aminopeptidase II are essential for the catalytic activity of the enzyme. Hwang GY; Kuo LY; Tsai MR; Yang SL; Lin LL Antonie Van Leeuwenhoek; 2005 May; 87(4):355-9. PubMed ID: 15928987 [TBL] [Abstract][Full Text] [Related]
15. Essential role of residue H49 for activity of Escherichia coli 1-deoxy-D-xylulose 5-phosphate synthase, the enzyme catalyzing the first step of the 2-C-methyl-D-erythritol 4-phosphate pathway for isoprenoid Synthesis. Querol J; Rodríguez-Concepción M; Boronat A; Imperial S Biochem Biophys Res Commun; 2001 Nov; 289(1):155-60. PubMed ID: 11708793 [TBL] [Abstract][Full Text] [Related]
16. Characterization of metal ligand mutants of tyrosine hydroxylase: insights into the plasticity of a 2-histidine-1-carboxylate triad. Fitzpatrick PF; Ralph EC; Ellis HR; Willmon OJ; Daubner SC Biochemistry; 2003 Feb; 42(7):2081-8. PubMed ID: 12590596 [TBL] [Abstract][Full Text] [Related]
17. Identification of a glutamine residue essential for catalytic activity of aspergilloglutamic peptidase by site-directed mutagenesis. Yabuki Y; Kubota K; Kojima M; Inoue H; Takahashi K FEBS Lett; 2004 Jul; 569(1-3):161-4. PubMed ID: 15225626 [TBL] [Abstract][Full Text] [Related]
18. Heterologous expression of an endogenous rat cytochrome b(5)/cytochrome b(5) reductase fusion protein: identification of histidines 62 and 85 as the heme axial ligands. Davis CA; Dhawan IK; Johnson MK; Barber MJ Arch Biochem Biophys; 2002 Apr; 400(1):63-75. PubMed ID: 11913972 [TBL] [Abstract][Full Text] [Related]
19. Importance of amino acid residue 474 for substrate specificity of canine and human cytochrome p450 3A enzymes. He YQ; Roussel F; Halpert JR Arch Biochem Biophys; 2001 May; 389(2):264-70. PubMed ID: 11339816 [TBL] [Abstract][Full Text] [Related]
20. Spectroscopic and biochemical studies on protein variants of quinaldine 4-oxidase: Role of E736 in catalysis and effects of serine ligands on the FeSI and FeSII clusters. Kappl R; Sielker S; Ranguelova K; Wegner J; Parschat K; Hüttermann J; Fetzner S Biochemistry; 2006 Dec; 45(49):14853-68. PubMed ID: 17144679 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]