BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 11112522)

  • 1. Structure of the bacteriophage lambda Ser/Thr protein phosphatase with sulfate ion bound in two coordination modes.
    Voegtli WC; White DJ; Reiter NJ; Rusnak F; Rosenzweig AC
    Biochemistry; 2000 Dec; 39(50):15365-74. PubMed ID: 11112522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the high affinity Mn2+ binding site of bacteriophage lambda phosphoprotein phosphatase: effects of metal ligand mutations on electron paramagnetic resonance spectra and phosphatase activities.
    White DJ; Reiter NJ; Sikkink RA; Yu L; Rusnak F
    Biochemistry; 2001 Jul; 40(30):8918-29. PubMed ID: 11467953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic and spectroscopic analyses of mutants of a conserved histidine in the metallophosphatases calcineurin and lambda protein phosphatase.
    Mertz P; Yu L; Sikkink R; Rusnak F
    J Biol Chem; 1997 Aug; 272(34):21296-302. PubMed ID: 9261141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mn2+ is a native metal ion activator for bacteriophage lambda protein phosphatase.
    Reiter TA; Reiter NJ; Rusnak F
    Biochemistry; 2002 Dec; 41(51):15404-9. PubMed ID: 12484780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of hydrolysis of phosphate esters by the dimetal center of 5'-nucleotidase based on crystal structures.
    Knöfel T; Sträter N
    J Mol Biol; 2001 May; 309(1):239-54. PubMed ID: 11491293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and binding studies of the three-metal center in two mycobacterial PPM Ser/Thr protein phosphatases.
    Wehenkel A; Bellinzoni M; Schaeffer F; Villarino A; Alzari PM
    J Mol Biol; 2007 Dec; 374(4):890-8. PubMed ID: 17961594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutational analysis of a Ser/Thr phosphatase. Identification of residues important in phosphoesterase substrate binding and catalysis.
    Zhuo S; Clemens JC; Stone RL; Dixon JE
    J Biol Chem; 1994 Oct; 269(42):26234-8. PubMed ID: 7929339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression and biochemical properties of a protein serine/threonine phosphatase encoded by bacteriophage lambda.
    Barik S
    Proc Natl Acad Sci U S A; 1993 Nov; 90(22):10633-7. PubMed ID: 8248155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphate forms an unusual tripodal complex with the Fe-Mn center of sweet potato purple acid phosphatase.
    Schenk G; Gahan LR; Carrington LE; Mitic N; Valizadeh M; Hamilton SE; de Jersey J; Guddat LW
    Proc Natl Acad Sci U S A; 2005 Jan; 102(2):273-8. PubMed ID: 15625111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a Substrate Identification Method for Human Scp1 Phosphatase Using Phosphorylation Mimic Phage Display.
    Otsubo K; Yoneda T; Kaneko A; Yagi S; Furukawa K; Chuman Y
    Protein Pept Lett; 2018; 25(1):76-83. PubMed ID: 29210629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution.
    Das AK; Helps NR; Cohen PT; Barford D
    EMBO J; 1996 Dec; 15(24):6798-809. PubMed ID: 9003755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A ligand-induced conformational change in the Yersinia protein tyrosine phosphatase.
    Schubert HL; Fauman EB; Stuckey JA; Dixon JE; Saper MA
    Protein Sci; 1995 Sep; 4(9):1904-13. PubMed ID: 8528087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structure and mechanism of protein phosphatases: insights into catalysis and regulation.
    Barford D; Das AK; Egloff MP
    Annu Rev Biophys Biomol Struct; 1998; 27():133-64. PubMed ID: 9646865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of a purple acid phosphatase, representing different steps of this enzyme's catalytic cycle.
    Schenk G; Elliott TW; Leung E; Carrington LE; Mitić N; Gahan LR; Guddat LW
    BMC Struct Biol; 2008 Jan; 8():6. PubMed ID: 18234116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. L-arginine binding to liver arginase requires proton transfer to gateway residue His141 and coordination of the guanidinium group to the dimanganese(II,II) center.
    Khangulov SV; Sossong TM; Ash DE; Dismukes GC
    Biochemistry; 1998 Jun; 37(23):8539-50. PubMed ID: 9622506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isostructural dinuclear phenoxo-/acetato-bridged manganese(II), cobalt(II), and zinc(II) complexes with labile sites: kinetics of transesterification of 2-hydroxypropyl-p-nitrophenylphosphate.
    Arora H; Barman SK; Lloret F; Mukherjee R
    Inorg Chem; 2012 May; 51(10):5539-53. PubMed ID: 22536852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of bacteriophage lambda protein phosphatase with Mn(II): evidence for the formation of a [Mn(II)]2 cluster.
    Rusnak F; Yu L; Todorovic S; Mertz P
    Biochemistry; 1999 May; 38(21):6943-52. PubMed ID: 10346916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of monofunctional histidinol phosphate phosphatase from Thermus thermophilus HB8.
    Omi R; Goto M; Miyahara I; Manzoku M; Ebihara A; Hirotsu K
    Biochemistry; 2007 Nov; 46(44):12618-27. PubMed ID: 17929834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supramolecular architectures in Co(II) and Cu(II) complexes with thiophene-2-carboxylate and 2-amino-4,6-dimethoxypyrimidine ligands.
    Karthikeyan A; Thomas Muthiah P; Perdih F
    Acta Crystallogr C Struct Chem; 2016 May; 72(Pt 5):442-50. PubMed ID: 27146575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of the catalytic subunit of human protein phosphatase 1 and its complex with tungstate.
    Egloff MP; Cohen PT; Reinemer P; Barford D
    J Mol Biol; 1995 Dec; 254(5):942-59. PubMed ID: 7500362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.