These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 11112542)

  • 1. Recognition of nucleoside triphosphates during RNA-catalyzed primer extension.
    Glasner ME; Yen CC; Ekland EH; Bartel DP
    Biochemistry; 2000 Dec; 39(50):15556-62. PubMed ID: 11112542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA-catalysed RNA polymerization using nucleoside triphosphates.
    Ekland EH; Bartel DP
    Nature; 1996 Jul; 382(6589):373-6. PubMed ID: 8684470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension.
    Johnston WK; Unrau PJ; Lawrence MS; Glasner ME; Bartel DP
    Science; 2001 May; 292(5520):1319-25. PubMed ID: 11358999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate 2'-hydroxyl groups required for ribozyme-catalyzed polymerization.
    Müller UF; Bartel DP
    Chem Biol; 2003 Sep; 10(9):799-806. PubMed ID: 14522050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ribozyme-catalyzed primer extension by trinucleotides: a model for the RNA-catalyzed replication of RNA.
    Doudna JA; Usman N; Szostak JW
    Biochemistry; 1993 Mar; 32(8):2111-5. PubMed ID: 7680575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA as an RNA polymerase: net elongation of an RNA primer catalyzed by the Tetrahymena ribozyme.
    Been MD; Cech TR
    Science; 1988 Mar; 239(4846):1412-6. PubMed ID: 2450400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Template-directed primer extension catalyzed by the Tetrahymena ribozyme.
    Bartel DP; Doudna JA; Usman N; Szostak JW
    Mol Cell Biol; 1991 Jun; 11(6):3390-4. PubMed ID: 2038341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic framework for ligation by an efficient RNA ligase ribozyme.
    Bergman NH; Johnston WK; Bartel DP
    Biochemistry; 2000 Mar; 39(11):3115-23. PubMed ID: 10715133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An RNA polymerase ribozyme that synthesizes its own ancestor.
    Tjhung KF; Shokhirev MN; Horning DP; Joyce GF
    Proc Natl Acad Sci U S A; 2020 Feb; 117(6):2906-2913. PubMed ID: 31988127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photocleavable initiator nucleotide substrates for an aldolase ribozyme.
    Fusz S; Srivatsan SG; Ackermann D; Famulok M
    J Org Chem; 2008 Jul; 73(13):5069-77. PubMed ID: 18517252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the role of a secondary structure element at the 5'- and 3'-splice sites in group I intron self-splicing: the tetrahymena L-16 ScaI ribozyme reveals a new role of the G.U pair in self-splicing.
    Karbstein K; Lee J; Herschlag D
    Biochemistry; 2007 Apr; 46(16):4861-75. PubMed ID: 17385892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selection of an improved RNA polymerase ribozyme with superior extension and fidelity.
    Zaher HS; Unrau PJ
    RNA; 2007 Jul; 13(7):1017-26. PubMed ID: 17586759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two independently selected capping ribozymes share similar substrate requirements.
    Zaher HS; Watkins RA; Unrau PJ
    RNA; 2006 Nov; 12(11):1949-58. PubMed ID: 16973893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A ribozyme composed of only two different nucleotides.
    Reader JS; Joyce GF
    Nature; 2002 Dec 19-26; 420(6917):841-4. PubMed ID: 12490955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conversion of a group II intron into a new multiple-turnover ribozyme that selectively cleaves oligonucleotides: elucidation of reaction mechanism and structure/function relationships.
    Michels WJ; Pyle AM
    Biochemistry; 1995 Mar; 34(9):2965-77. PubMed ID: 7893710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization and optimality of a short ribozyme ligase that joins non-Watson-Crick base pairings.
    Robertson MP; Hesselberth JR; Ellington AD
    RNA; 2001 Apr; 7(4):513-23. PubMed ID: 11345430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Processivity of ribozyme-catalyzed RNA polymerization.
    Lawrence MS; Bartel DP
    Biochemistry; 2003 Jul; 42(29):8748-55. PubMed ID: 12873135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combinatorial minimization and secondary structure determination of a nucleotide synthase ribozyme.
    Chapple KE; Bartel DP; Unrau PJ
    RNA; 2003 Oct; 9(10):1208-20. PubMed ID: 13130135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic investigations of a ribozyme derived from the Tetrahymena group I intron: insights into catalysis and the second step of self-splicing.
    Mei R; Herschlag D
    Biochemistry; 1996 May; 35(18):5796-809. PubMed ID: 8639540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The tetrahymena ribozyme cleaves a 5'-methylene phosphonate monoester approximately 10(2)-fold faster than a normal phosphate diester: implications for enzyme catalysis of phosphoryl transfer reactions.
    Liao X; Anjaneyulu PS; Curley JF; Hsu M; Boehringer M; Caruthers MH; Piccirilli JA
    Biochemistry; 2001 Sep; 40(37):10911-26. PubMed ID: 11551186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.