BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 11112801)

  • 1. Optical recording of odor-evoked responses in the olfactory brain of the naïve and aversively trained terrestrial snails.
    Nikitin ES; Balaban PM
    Learn Mem; 2000; 7(6):422-32. PubMed ID: 11112801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Optical recording of the odor-evoked responses in olfactory structures of the brain of the terrestrial mollusk Helix].
    Nikitin ES; Balaban PM
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1999; 49(5):817-29. PubMed ID: 10570537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Recording of spontaneous oscillations in the procerebrum of terrestrial mollusk Helix in free behavior].
    Samarova EI; Balaban PM
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2006; 56(6):725-30. PubMed ID: 17285767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recording of spontaneous oscillations in the procerebrum of the terrestrial snail Helix during free behavior.
    Samarova EI; Balaban PM
    Neurosci Behav Physiol; 2007 Oct; 37(8):773-7. PubMed ID: 17922241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical recording of responses to odor in olfactory structures of the nervous system in the terrestrial mollusk Helix.
    Nikitin ES; Balaban PM
    Neurosci Behav Physiol; 2001; 31(1):21-30. PubMed ID: 11265810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in frequency of spontaneous oscillations in procerebrum correlate to behavioural choice in terrestrial snails.
    Samarova E; Balaban P
    Front Cell Neurosci; 2009; 3():8. PubMed ID: 19753329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular potentials of salamander mitral/tufted neurons in response to odor stimulation.
    Hamilton KA; Kauer JS
    Brain Res; 1985 Jul; 338(1):181-5. PubMed ID: 4027588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical recording analysis of olfactory response of the procerebral lobe in the slug brain.
    Kimura T; Toda S; Sekiguchi T; Kawahara S; Kirino Y
    Learn Mem; 1998; 4(5):389-400. PubMed ID: 10701878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Central and reflex neuronal responses elicited by odor in a terrestrial mollusk.
    Gervais R; Kleinfeld D; Delaney KR; Gelperin A
    J Neurophysiol; 1996 Aug; 76(2):1327-39. PubMed ID: 8871239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Negative relationship between odor-induced spike activity and spontaneous oscillations in the primary olfactory system of the terrestrial slug Limax marginatus.
    Ito I; Watanabe S; Kimura T; Kirino Y; Ito E
    Zoolog Sci; 2003 Nov; 20(11):1327-35. PubMed ID: 14624030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro odor-aversion conditioning in a terrestrial mollusk.
    Inoue T; Murakami M; Watanabe S; Inokuma Y; Kirino Y
    J Neurophysiol; 2006 Jun; 95(6):3898-903. PubMed ID: 16495363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo recordings of spontaneous and odor-modulated dynamics in the Limax olfactory lobe.
    Cooke IR; Gelperin A
    J Neurobiol; 2001 Feb; 46(2):126-41. PubMed ID: 11153014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Image analysis of olfactory responses in the procerebrum of the terrestrial slug Limax marginatus.
    Toda S; Kawahara S; Kirino Y
    J Exp Biol; 2000 Oct; 203(Pt 19):2895-905. PubMed ID: 10976027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide and carbon monoxide modulate oscillations of olfactory interneurons in a terrestrial mollusk.
    Gelperin A; Flores J; Raccuia-Behling F; Cooke IR
    J Neurophysiol; 2000 Jan; 83(1):116-27. PubMed ID: 10634858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vital staining from dye-coated microprobes identifies new olfactory interneurons for optical and electrical recording.
    Gelperin A; Flores J
    J Neurosci Methods; 1997 Mar; 72(1):97-108. PubMed ID: 9128173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Air movement evokes electro-olfactogram oscillations in the olfactory epithelium and modulates olfactory processing in a slug.
    Ito I; Watanabe S; Kirino Y
    J Neurophysiol; 2006 Oct; 96(4):1939-48. PubMed ID: 16837664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial variation in response to odorants on the rat olfactory epithelium.
    Edwards DA; Mather RA; Dodd GH
    Experientia; 1988 Mar; 44(3):208-11. PubMed ID: 3350129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Odor-evoked responses in the olfactory center neurons in the terrestrial slug.
    Murakami M; Watanabe S; Inoue T; Kirino Y
    J Neurobiol; 2004 Feb; 58(3):369-78. PubMed ID: 14750149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast wave activity in the rat rhinencephalon: elicitation by the odors of phytochemicals, organic solvents, and a rodent predator.
    Zibrowski EM; Hoh TE; Vanderwolf CH
    Brain Res; 1998 Aug; 800(2):207-15. PubMed ID: 9685644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amplification of odor-induced Ca(2+) transients by store-operated Ca(2+) release and its role in olfactory signal transduction.
    Zufall F; Leinders-Zufall T; Greer CA
    J Neurophysiol; 2000 Jan; 83(1):501-12. PubMed ID: 10634891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.