BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 11112848)

  • 1. Isolation and properties of peroxidase produced by the fungus Panus tigrinus.
    Revin VV; Cadimaliev DA; Atykyan NA; Sitkin BV; Samuilov VD
    Biochemistry (Mosc); 2000 Nov; 65(11):1305-9. PubMed ID: 11112848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Comparison of lignocellulolytic enzyme profiles secreted by Panus conchatus and Phanerochaete chrysosporium during solid state cultures].
    Wang C; Yu H; Fu S
    Wei Sheng Wu Xue Bao; 1999 Apr; 39(2):127-31. PubMed ID: 12555416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effect of wood modification on lignin consumption and synthesis of lignolytic enzymes by the fungus Panus (Lentinus) tigrinus].
    Kadimaliev DA; Revin VV; Atykian NA; Samuilov VD
    Prikl Biokhim Mikrobiol; 2003; 39(5):555-60. PubMed ID: 14593869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Degradation of poplar wood by Fomes sclerodermeus: production of ligninolytic enzymes in sawdust of poplar and cedar].
    Papinutti VL; Diorio LA; Forchiassin F
    Rev Iberoam Micol; 2003 Mar; 20(1):16-20. PubMed ID: 12825976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of bound and free fractions of lignocellulose-degrading enzymes of wood-rotting fungi Pleurotus ostreatus, Trametes versicolor and Piptoporus betulinus.
    Valásková V; Baldrian P
    Res Microbiol; 2006 Mar; 157(2):119-24. PubMed ID: 16125911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation of the white-rot basidiomycete Panus tigrinus for transformation of high concentrations of chlorophenols.
    Leontievsky AA; Myasoedova NM; Golovleva LA; Sedarati M; Evans CS
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):599-604. PubMed ID: 12172632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of lignocellulolytic enzymes in the decomposition of leaf litter in a subtropical forest.
    Hao JJ; Tian XJ; Song FQ; He XB; Zhang ZJ; Zhang P
    J Eukaryot Microbiol; 2006; 53(3):193-8. PubMed ID: 16677342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Degradation of anthraquinone blue by Trametes trogii].
    Levin L; Jordan A; Forchiassin F; Viale A
    Rev Argent Microbiol; 2001; 33(4):223-8. PubMed ID: 11833254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of laccase and manganese peroxidase by Fomes sclerodermeus grown on wheat bran.
    Papinutti VL; Diorio LA; Forchiassin F
    J Ind Microbiol Biotechnol; 2003 Mar; 30(3):157-60. PubMed ID: 12715252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Submerged and solid-state production of laccase and Mn-peroxidase by Panus tigrinus on olive mill wastewater-based media.
    Fenice M; Giovannozzi Sermanni G; Federici F; D'Annibale A
    J Biotechnol; 2003 Jan; 100(1):77-85. PubMed ID: 12413788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Determination of the parameters for producing a biobinder from wood: a mathematical modeling of the transformation of lignocellulose substrate by the fungus Panus tigrinus].
    Kondrashchenko VI; Manukovskiĭ NS; Kovalev VS
    Prikl Biokhim Mikrobiol; 2006; 42(6):721-9. PubMed ID: 17168304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactions of blue and yellow fungal laccases with lignin model compounds.
    Leontievsky AA; Myasoedova NM; Baskunov BP; Pozdnyakova NN; Vares T; Kalkkinen N; Hatakka AI; Golovleva LA
    Biochemistry (Mosc); 1999 Oct; 64(10):1150-6. PubMed ID: 10561562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid Mn-peroxidase from the ligninolytic fungus Panus tigrinus 8/18. Isolation, substrate specificity, and catalytic cycle.
    Lisov AV; Leontievsky AA; Golovleva LA
    Biochemistry (Mosc); 2003 Sep; 68(9):1027-35. PubMed ID: 14606947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transformation of 2,4,6-trichlorophenol by the white rot fungi Panus tigrinus and Coriolus versicolor.
    Leontievsky AA; Myasoedova NM; Baskunov BP; Evans CS; Golovleva LA
    Biodegradation; 2000; 11(5):331-40. PubMed ID: 11487063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Enzymes of white rot fungi involved in lignin degradation].
    Papinutti VL; Forchiassin F
    Rev Argent Microbiol; 2000; 32(2):83-8. PubMed ID: 10885008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laccase production by some Phlebia species.
    Arora DS; Rampal P
    J Basic Microbiol; 2002; 42(5):295-301. PubMed ID: 12362400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential regulation of manganese peroxidases and characterization of two variable MnP encoding genes in the white-rot fungus Physisporinus rivulosus.
    Hakala TK; Hildén K; Maijala P; Olsson C; Hatakka A
    Appl Microbiol Biotechnol; 2006 Dec; 73(4):839-49. PubMed ID: 17031639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification, molecular characterization and reactivity with aromatic compounds of a laccase from basidiomycete Trametes sp. strain AH28-2.
    Xiao YZ; Tu XM; Wang J; Zhang M; Cheng Q; Zeng WY; Shi YY
    Appl Microbiol Biotechnol; 2003 Feb; 60(6):700-7. PubMed ID: 12664149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Hybrid Mn-peroxidases from basidiomycetes: a review].
    Lisov AV; Leont'evskiĭ AA; Golovleva LA
    Prikl Biokhim Mikrobiol; 2007; 43(5):598-606. PubMed ID: 18038680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mineralization of 14C-labelled synthetic lignin and extracellular enzyme activities of the wood-colonizing ascomycetes Xylaria hypoxylon and Xylaria polymorpha.
    Liers C; Ullrich R; Steffen KT; Hatakka A; Hofrichter M
    Appl Microbiol Biotechnol; 2006 Jan; 69(5):573-9. PubMed ID: 16021487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.