These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 11113165)
1. Overexpression of Mn-superoxide dismutase in maize leaves leads to increased monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase activities. Kingston-Smith AH; Foyer CH J Exp Bot; 2000 Nov; 51(352):1867-77. PubMed ID: 11113165 [TBL] [Abstract][Full Text] [Related]
2. Low temperature-induced changes in the distribution of H2O2 and antioxidants between the bundle sheath and mesophyll cells of maize leaves. Pastori G; Foyer CH; Mullineaux P J Exp Bot; 2000 Jan; 51(342):107-13. PubMed ID: 10938801 [TBL] [Abstract][Full Text] [Related]
3. Reactive oxygen species, antioxidant enzyme activity, and gene expression patterns in a pair of nearly isogenic lines of nicosulfuron-exposed waxy maize (Zea mays L.). Wang J; Zhong X; Zhu K; Lv J; Lv X; Li F; Shi Z Environ Sci Pollut Res Int; 2018 Jul; 25(19):19012-19027. PubMed ID: 29721793 [TBL] [Abstract][Full Text] [Related]
4. Exogenous abscisic acid increases antioxidant enzymes and related gene expression in pepper (Capsicum annuum) leaves subjected to chilling stress. Guo WL; Chen RG; Gong ZH; Yin YX; Ahmed SS; He YM Genet Mol Res; 2012 Nov; 11(4):4063-80. PubMed ID: 23079969 [TBL] [Abstract][Full Text] [Related]
5. Localization of reactive oxygen species and change of antioxidant capacities in mesophyll and bundle sheath chloroplasts of maize under salinity. Omoto E; Nagao H; Taniguchi M; Miyake H Physiol Plant; 2013 Sep; 149(1):1-12. PubMed ID: 23231594 [TBL] [Abstract][Full Text] [Related]
6. Effect of zinc on antioxidant response in maize (Zea mays L.) leaves. Pandey N; Singh AK; Pathak GC; Sharma CP Indian J Exp Biol; 2002 Aug; 40(8):954-6. PubMed ID: 12597030 [TBL] [Abstract][Full Text] [Related]
7. Overexpression of iron superoxide dismutase in transformed poplar modifies the regulation of photosynthesis at low CO2 partial pressures or following exposure to the prooxidant herbicide methyl viologen. Arisi AC; Cornic G; Jouanin L; Foyer CH Plant Physiol; 1998 Jun; 117(2):565-74. PubMed ID: 9625709 [TBL] [Abstract][Full Text] [Related]
8. Abscisic acid-induced apoplastic H2O2 accumulation up-regulates the activities of chloroplastic and cytosolic antioxidant enzymes in maize leaves. Hu X; Jiang M; Zhang A; Lu J Planta; 2005 Dec; 223(1):57-68. PubMed ID: 16049674 [TBL] [Abstract][Full Text] [Related]
9. Expression Patterns of Genes Involved in Ascorbate-Glutathione Cycle in Aphid-Infested Maize (Zea mays L.) Seedlings. Sytykiewicz H Int J Mol Sci; 2016 Feb; 17(3):268. PubMed ID: 26907270 [TBL] [Abstract][Full Text] [Related]
10. Copper-caused oxidative stress triggers the activation of antioxidant enzymes via ZmMPK3 in maize leaves. Liu J; Wang J; Lee S; Wen R PLoS One; 2018; 13(9):e0203612. PubMed ID: 30222757 [TBL] [Abstract][Full Text] [Related]
11. ABA Affects Brassinosteroid-Induced Antioxidant Defense via ZmMAP65-1a in Maize Plants. Zhu Y; Liu W; Sheng Y; Zhang J; Chiu T; Yan J; Jiang M; Tan M; Zhang A Plant Cell Physiol; 2015 Jul; 56(7):1442-55. PubMed ID: 25941233 [TBL] [Abstract][Full Text] [Related]
12. Pretreatment with polyamines alleviate the deleterious effects of diuron in maize leaves. Durmuş N; Bekircan T Acta Biol Hung; 2015 Mar; 66(1):52-65. PubMed ID: 25740438 [TBL] [Abstract][Full Text] [Related]
13. The effect of acute high light and low temperature stresses on the ascorbate-glutathione cycle and superoxide dismutase activity in two Dunaliella salina strains. Haghjou MM; Shariati M; Smirnoff N Physiol Plant; 2009 Mar; 135(3):272-80. PubMed ID: 19236661 [TBL] [Abstract][Full Text] [Related]
14. Modulating the antioxidant system by exogenous 2-(3,4-dichlorophenoxy) triethylamine in maize seedlings exposed to polyethylene glycol-simulated drought stress. Xie T; Gu W; Zhang L; Li L; Qu D; Li C; Meng Y; Li J; Wei S; Li W PLoS One; 2018; 13(9):e0203626. PubMed ID: 30183770 [TBL] [Abstract][Full Text] [Related]
15. Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: Coordinated functions of metal chelation, antioxidant defense and glyoxalase systems. Mahmud JA; Hasanuzzaman M; Nahar K; Bhuyan MHMB; Fujita M Ecotoxicol Environ Saf; 2018 Jan; 147():990-1001. PubMed ID: 29976011 [TBL] [Abstract][Full Text] [Related]
16. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Jiang M; Zhang J Plant Cell Physiol; 2001 Nov; 42(11):1265-73. PubMed ID: 11726712 [TBL] [Abstract][Full Text] [Related]
17. The role of antioxidant responses on the tolerance range of extreme halophyte Salsola crassa grown under toxic salt concentrations. Yildiztugay E; Ozfidan-Konakci C; Kucukoduk M Ecotoxicol Environ Saf; 2014 Dec; 110():21-30. PubMed ID: 25193881 [TBL] [Abstract][Full Text] [Related]
18. Changes in extreme high-temperature tolerance and activities of antioxidant enzymes of sacred lotus seeds. Ding Y; Cheng H; Song S Sci China C Life Sci; 2008 Sep; 51(9):842-53. PubMed ID: 18726532 [TBL] [Abstract][Full Text] [Related]
19. Role of antioxidant and anaerobic metabolism enzymes in providing tolerance to maize (Zea mays L.) seedlings against waterlogging. Chugh V; Kaur N; Gupta AK Indian J Biochem Biophys; 2011 Oct; 48(5):346-52. PubMed ID: 22165294 [TBL] [Abstract][Full Text] [Related]
20. Role of nitric oxide in abscisic acid-induced subcellular antioxidant defense of maize leaves. Sang JR; Jiang MY; Lin F; Li J; Xu SC Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2007 Dec; 33(6):553-66. PubMed ID: 18349510 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]