BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 11113180)

  • 1. Ptc1, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogen-activated protein kinase Hog1.
    Warmka J; Hanneman J; Lee J; Amin D; Ota I
    Mol Cell Biol; 2001 Jan; 21(1):51-60. PubMed ID: 11113180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Ptc2 type 2C Ser/Thr phosphatase in yeast high-osmolarity glycerol pathway inactivation.
    Young C; Mapes J; Hanneman J; Al-Zarban S; Ota I
    Eukaryot Cell; 2002 Dec; 1(6):1032-40. PubMed ID: 12477803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nbp2 targets the Ptc1-type 2C Ser/Thr phosphatase to the HOG MAPK pathway.
    Mapes J; Ota IM
    EMBO J; 2004 Jan; 23(2):302-11. PubMed ID: 14685261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two activating phosphorylation sites of Pbs2 MAP2K in the yeast HOG pathway are differentially dephosphorylated by four PP2C phosphatases Ptc1-Ptc4.
    Tatebayashi K; Saito H
    J Biol Chem; 2023 Apr; 299(4):104569. PubMed ID: 36870684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting of PP2C in budding yeast.
    Ota IM; Mapes J
    Methods Mol Biol; 2007; 365():309-22. PubMed ID: 17200571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yeast Skn7p activity is modulated by the Sln1p-Ypd1p osmosensor and contributes to regulation of the HOG pathway.
    Ketela T; Brown JL; Stewart RC; Bussey H
    Mol Gen Genet; 1998 Sep; 259(4):372-8. PubMed ID: 9790591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the Saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases.
    Wurgler-Murphy SM; Maeda T; Witten EA; Saito H
    Mol Cell Biol; 1997 Mar; 17(3):1289-97. PubMed ID: 9032256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A docking site determining specificity of Pbs2 MAPKK for Ssk2/Ssk22 MAPKKKs in the yeast HOG pathway.
    Tatebayashi K; Takekawa M; Saito H
    EMBO J; 2003 Jul; 22(14):3624-34. PubMed ID: 12853477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Counteractive roles of protein phosphatase 2C (PP2C) and a MAP kinase kinase homolog in the osmoregulation of fission yeast.
    Shiozaki K; Russell P
    EMBO J; 1995 Feb; 14(3):492-502. PubMed ID: 7859738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat-shock-induced activation of stress MAP kinase is regulated by threonine- and tyrosine-specific phosphatases.
    Nguyen AN; Shiozaki K
    Genes Dev; 1999 Jul; 13(13):1653-63. PubMed ID: 10398679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osmostress enhances activating phosphorylation of Hog1 MAP kinase by mono-phosphorylated Pbs2 MAP2K.
    Tatebayashi K; Yamamoto K; Tomida T; Nishimura A; Takayama T; Oyama M; Kozuka-Hata H; Adachi-Akahane S; Tokunaga Y; Saito H
    EMBO J; 2020 Mar; 39(5):e103444. PubMed ID: 32011004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two protein-tyrosine phosphatases inactivate the osmotic stress response pathway in yeast by targeting the mitogen-activated protein kinase, Hog1.
    Jacoby T; Flanagan H; Faykin A; Seto AG; Mattison C; Ota I
    J Biol Chem; 1997 Jul; 272(28):17749-55. PubMed ID: 9211927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of protein phosphatases 2C on tolerance to lithium toxicity in the yeast Saccharomyces cerevisiae.
    Ruiz A; González A; García-Salcedo R; Ramos J; Ariño J
    Mol Microbiol; 2006 Oct; 62(1):263-77. PubMed ID: 16956380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis.
    O'Rourke SM; Herskowitz I
    Mol Biol Cell; 2004 Feb; 15(2):532-42. PubMed ID: 14595107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of function of Hog1 improves glycerol assimilation in Saccharomyces cerevisiae.
    Sone M; Navanopparatsakul K; Takahashi S; Furusawa C; Hirasawa T
    World J Microbiol Biotechnol; 2023 Jul; 39(10):255. PubMed ID: 37474876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of the Hog1 MAPK by the Ssk2/Ssk22 MAP3Ks, in the absence of the osmosensors, is not sufficient to trigger osmostress adaptation in Saccharomyces cerevisiae.
    Vázquez-Ibarra A; Subirana L; Ongay-Larios L; Kawasaki L; Rojas-Ortega E; Rodríguez-González M; de Nadal E; Posas F; Coria R
    FEBS J; 2018 Mar; 285(6):1079-1096. PubMed ID: 29341399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the osmoregulatory HOG MAPK cascade in yeast.
    Saito H; Tatebayashi K
    J Biochem; 2004 Sep; 136(3):267-72. PubMed ID: 15598881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cdc42-Specific GTPase-Activating Protein Rga1 Squelches Crosstalk between the High-Osmolarity Glycerol (HOG) and Mating Pheromone Response MAPK Pathways.
    Patterson JC; Goupil LS; Thorner J
    Biomolecules; 2021 Oct; 11(10):. PubMed ID: 34680163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the Saccharomyces cerevisiae Slt2 kinase pathway by the stress-inducible Sdp1 dual specificity phosphatase.
    Hahn JS; Thiele DJ
    J Biol Chem; 2002 Jun; 277(24):21278-84. PubMed ID: 11923319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two adjacent docking sites in the yeast Hog1 mitogen-activated protein (MAP) kinase differentially interact with the Pbs2 MAP kinase kinase and the Ptp2 protein tyrosine phosphatase.
    Murakami Y; Tatebayashi K; Saito H
    Mol Cell Biol; 2008 Apr; 28(7):2481-94. PubMed ID: 18212044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.