These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

610 related articles for article (PubMed ID: 11113203)

  • 1. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases.
    Bibikova M; Carroll D; Segal DJ; Trautman JK; Smith J; Kim YG; Chandrasegaran S
    Mol Cell Biol; 2001 Jan; 21(1):289-97. PubMed ID: 11113203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains.
    Smith J; Bibikova M; Whitby FG; Reddy AR; Chandrasegaran S; Carroll D
    Nucleic Acids Res; 2000 Sep; 28(17):3361-9. PubMed ID: 10954606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chimeric nucleases stimulate gene targeting in human cells.
    Porteus MH; Baltimore D
    Science; 2003 May; 300(5620):763. PubMed ID: 12730593
    [No Abstract]   [Full Text] [Related]  

  • 4. High-frequency homologous recombination in plants mediated by zinc-finger nucleases.
    Wright DA; Townsend JA; Winfrey RJ; Irwin PA; Rajagopal J; Lonosky PM; Hall BD; Jondle MD; Voytas DF
    Plant J; 2005 Nov; 44(4):693-705. PubMed ID: 16262717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases.
    Szczepek M; Brondani V; Büchel J; Serrano L; Segal DJ; Cathomen T
    Nat Biotechnol; 2007 Jul; 25(7):786-93. PubMed ID: 17603476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chimeric restriction enzymes: what is next?
    Chandrasegaran S; Smith J
    Biol Chem; 1999; 380(7-8):841-8. PubMed ID: 10494832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creating designed zinc-finger nucleases with minimal cytotoxicity.
    Ramalingam S; Kandavelou K; Rajenderan R; Chandrasegaran S
    J Mol Biol; 2011 Jan; 405(3):630-41. PubMed ID: 21094162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Zinc finger nucleases and their application].
    Deng SS; Wang YZ; Ma D
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2010 Apr; 27(2):162-5. PubMed ID: 20376797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing gene targeting with designed zinc finger nucleases.
    Bibikova M; Beumer K; Trautman JK; Carroll D
    Science; 2003 May; 300(5620):764. PubMed ID: 12730594
    [No Abstract]   [Full Text] [Related]  

  • 10. Directed evolution of an enhanced and highly efficient FokI cleavage domain for zinc finger nucleases.
    Guo J; Gaj T; Barbas CF
    J Mol Biol; 2010 Jul; 400(1):96-107. PubMed ID: 20447404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using nucleases to stimulate homologous recombination.
    Carroll D
    Methods Mol Biol; 2004; 262():195-207. PubMed ID: 14769963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-specific cleavage of DNA-RNA hybrids by zinc finger/FokI cleavage domain fusions.
    Kim YG; Shi Y; Berg JM; Chandrasegaran S
    Gene; 1997 Dec; 203(1):43-9. PubMed ID: 9426005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restricted spacer tolerance of a zinc finger nuclease with a six amino acid linker.
    Shimizu Y; Bhakta MS; Segal DJ
    Bioorg Med Chem Lett; 2009 Jul; 19(14):3970-2. PubMed ID: 19289279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel zinc-finger nuclease platform with a sequence-specific cleavage module.
    Schierling B; Dannemann N; Gabsalilow L; Wende W; Cathomen T; Pingoud A
    Nucleic Acids Res; 2012 Mar; 40(6):2623-38. PubMed ID: 22135304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient endogenous human gene correction using designed zinc-finger nucleases.
    Urnov FD; Miller JC; Lee YL; Beausejour CM; Rock JM; Augustus S; Jamieson AC; Porteus MH; Gregory PD; Holmes MC
    Nature; 2005 Jun; 435(7042):646-51. PubMed ID: 15806097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient double-stranded DNA cleavage by artificial zinc-finger nucleases composed of one zinc-finger protein and a single-chain FokI dimer.
    Mino T; Aoyama Y; Sera T
    J Biotechnol; 2009 Mar; 140(3-4):156-61. PubMed ID: 19428709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic domain of restriction endonuclease BmrI as a cleavage module for engineering endonucleases with novel substrate specificities.
    Chan SH; Bao Y; Ciszak E; Laget S; Xu SY
    Nucleic Acids Res; 2007; 35(18):6238-48. PubMed ID: 17855396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of DNA binding of the zinc finger and linkers for domain fusion on the catalytic activity of sequence-specific chimeric recombinases determined by a facile fluorescent system.
    Nomura W; Masuda A; Ohba K; Urabe A; Ito N; Ryo A; Yamamoto N; Tamamura H
    Biochemistry; 2012 Feb; 51(7):1510-7. PubMed ID: 22304662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A detailed study of the substrate specificity of a chimeric restriction enzyme.
    Smith J; Berg JM; Chandrasegaran S
    Nucleic Acids Res; 1999 Jan; 27(2):674-81. PubMed ID: 9862996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creating highly specific nucleases by fusion of active restriction endonucleases and catalytically inactive homing endonucleases.
    Fonfara I; Curth U; Pingoud A; Wende W
    Nucleic Acids Res; 2012 Jan; 40(2):847-60. PubMed ID: 21965534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.