BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 11113305)

  • 1. Mitochondrial superoxide production in kainate-induced hippocampal damage.
    Liang LP; Ho YS; Patel M
    Neuroscience; 2000; 101(3):563-70. PubMed ID: 11113305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age dependence of seizure-induced oxidative stress.
    Patel M; Li QY
    Neuroscience; 2003; 118(2):431-7. PubMed ID: 12699779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced hippocampal F2-isoprostane formation following kainate-induced seizures.
    Patel M; Liang LP; Roberts LJ
    J Neurochem; 2001 Dec; 79(5):1065-9. PubMed ID: 11739620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dependence of excitotoxic neurodegeneration on mitochondrial aconitase inactivation.
    Li QY; Pedersen C; Day BJ; Patel M
    J Neurochem; 2001 Aug; 78(4):746-55. PubMed ID: 11520895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial oxidative stress and increased seizure susceptibility in Sod2(-/+) mice.
    Liang LP; Patel M
    Free Radic Biol Med; 2004 Mar; 36(5):542-54. PubMed ID: 14980699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kainate-induced seizures, oxidative stress and neuronal loss in aging rats.
    Liang LP; Beaudoin ME; Fritz MJ; Fulton R; Patel M
    Neuroscience; 2007 Jul; 147(4):1114-8. PubMed ID: 17590518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ability of GDNF to diminish free radical production leads to protection against kainate-induced excitotoxicity in hippocampus.
    Cheng H; Fu YS; Guo JW
    Hippocampus; 2004; 14(1):77-86. PubMed ID: 15058485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protection against kainate neurotoxicity by ginsenosides: attenuation of convulsive behavior, mitochondrial dysfunction, and oxidative stress.
    Shin EJ; Jeong JH; Kim AY; Koh YH; Nah SY; Kim WK; Ko KH; Kim HJ; Wie MB; Kwon YS; Yoneda Y; Kim HC
    J Neurosci Res; 2009 Feb; 87(3):710-22. PubMed ID: 18816793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid generation of mitochondrial superoxide induces mitochondrion-dependent but caspase-independent cell death in hippocampal neuronal cells that morphologically resembles necroptosis.
    Fukui M; Choi HJ; Zhu BT
    Toxicol Appl Pharmacol; 2012 Jul; 262(2):156-66. PubMed ID: 22575170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA damage and nonhomologous end joining in excitotoxicity: neuroprotective role of DNA-PKcs in kainic acid-induced seizures.
    Neema M; Navarro-Quiroga I; Chechlacz M; Gilliams-Francis K; Liu J; Lamonica K; Lin SL; Naegele JR
    Hippocampus; 2005; 15(8):1057-71. PubMed ID: 16216017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative stress, mitochondrial function, and acute glutamate excitotoxicity in cultured cerebellar granule cells.
    Castilho RF; Ward MW; Nicholls DG
    J Neurochem; 1999 Apr; 72(4):1394-401. PubMed ID: 10098841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mitochondrial division inhibitor, Mdivi-1, inhibits mitochondrial fragmentation and attenuates kainic acid-induced hippocampal cell death.
    Kim H; Lee JY; Park KJ; Kim WH; Roh GS
    BMC Neurosci; 2016 Jun; 17(1):33. PubMed ID: 27287829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear factor kappa B-mediated kainate neurotoxicity in the rat and hamster hippocampus.
    Won SJ; Ko HW; Kim EY; Park EC; Huh K; Jung NP; Choi I; Oh YK; Shin HC; Gwag BJ
    Neuroscience; 1999; 94(1):83-91. PubMed ID: 10613499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prevention of kainic acid-induced changes in nitric oxide level and neuronal cell damage in the rat hippocampus by manganese complexes of curcumin and diacetylcurcumin.
    Sumanont Y; Murakami Y; Tohda M; Vajragupta O; Watanabe H; Matsumoto K
    Life Sci; 2006 Mar; 78(16):1884-91. PubMed ID: 16266725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kainate-induced hippocampal DNA damage is attenuated in superoxide dismutase transgenic mice.
    Hirata H; Cadet JL
    Brain Res Mol Brain Res; 1997 Aug; 48(1):145-8. PubMed ID: 9379835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic identification of hippocampal proteins vulnerable to oxidative stress in excitotoxin-induced acute neuronal injury.
    Furukawa A; Kawamoto Y; Chiba Y; Takei S; Hasegawa-Ishii S; Kawamura N; Yoshikawa K; Hosokawa M; Oikawa S; Kato M; Shimada A
    Neurobiol Dis; 2011 Sep; 43(3):706-14. PubMed ID: 21669285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kainate-induced mitochondrial oxidative stress contributes to hippocampal degeneration in senescence-accelerated mice.
    Shin EJ; Jeong JH; Bing G; Park ES; Chae JS; Yen TP; Kim WK; Wie MB; Jung BD; Kim HJ; Lee SY; Kim HC
    Cell Signal; 2008 Apr; 20(4):645-58. PubMed ID: 18248956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of nitric oxide, superoxide anion, and peroxynitrite to activation of mitochondrial apoptotic signaling in hippocampal CA3 subfield following experimental temporal lobe status epilepticus.
    Chuang YC; Chen SD; Liou CW; Lin TK; Chang WN; Chan SH; Chang AY
    Epilepsia; 2009 Apr; 50(4):731-46. PubMed ID: 19178557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic and cyclical neuronal loss in hippocampal slice cultures following transient inhibition of the type 1 isoform of superoxide dismutase.
    Moskowitz SI; Basu SB; Bergold PJ
    Brain Res; 2001 Sep; 913(2):207-19. PubMed ID: 11549389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delayed mitochondrial dysfunction in excitotoxic neuron death: cytochrome c release and a secondary increase in superoxide production.
    Luetjens CM; Bui NT; Sengpiel B; Münstermann G; Poppe M; Krohn AJ; Bauerbach E; Krieglstein J; Prehn JH
    J Neurosci; 2000 Aug; 20(15):5715-23. PubMed ID: 10908611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.